SPO12
Standard/Hummer/Sprinter
Two Post Surface Mounted Swing Arm Frame Engaging Lift
Standard (500/700 Series) Capacity: 12,000 lbs.
Hummer (5W0/7W0 Series) Capacity: 12,000 lbs.
Sprinter (5A0/7A0 Series) Capacity: 9,000 lbs.

IMPORTANT Reference ANSI/ALI ALIS, Safety Requirements for Installation and Service of Automotive Lifts before installing lift.

OPERATING CONDITIONS
Lift is not intended for outdoor use and has an operating ambient temperature range of 41°-104°F (5°-40°C)

Español Página 25
Le Français La page 49

IN20272
Rev. AC 5/22/2019
© May 2019 by Vehicle Service Group. All rights reserved. CO10473
INSTALLATION INSTRUCTIONS

SP012 Standard (500 Series) & SP012 Sprinter (5A0 Series)
SP012 Standard (700 Series) & SP012 Sprinter (7A0 Series)

Note: See Pg. 3 for Hummer (5W0/7W0 Series) Lifts.

ATTENTION: Continue to page 7 for SP012 standard installation.
IMPORTANT If you have ordered a SPO12 Hummer Lift (5W0/7W0 Series) these figures MUST be used in place of the standard instruction figures on page 2.

Fig. 1a

- ** APPROACH **
- ** 12'-10 5/8” **
- ** 2'-5” **
- ** 7'-0” minimum to nearest obstruction or bay. 8'-0” minimum to nearest wall. **
- ** (14) 3/4” Anchors **

Left Rear

Right Front

Fig. 1b

SPO12 Hummer Lift (5W0 Series)

SPO12 Hummer Lift (7W0 Series)
Important

If you have ordered a SP012 Hummer Lift (5W0/7W0 Series) these figures MUST be used in place of the standard instruction figures on pages 7 & 8.

Warning

DO NOT install this lift in a pit or depression due to fire or explosion risks.

1 Phase Lifts

(2) 3/8"-16NC x 3/4" HHCS & Flanged Locknut

1/4"-20NC x 2-3/4" HHCS & 1/4" Locknut

2 Spacers

(4) 3/8"-16NC x 1" Flanged HHCS and Flanged Nuts

1/4"-20NC x 2-3/4" HHCS, Flat Washer, Spacer, and Nut

Fig. 2

Overhead Assembly

13'-11 1/2"
Top Overhead Assembly (14'-11 1/2" EH1)

Mounting Bracket

3/8"-16NC x 3/4" HHCS & Flanged Locknut

Tie Bar & Spacers - use (2) 3/8"-16NC x 2-1/2"
Carriage Bolts and Flanged Locknuts

Use (2) 3/8"-16NC x 1" Carriage Bolts in Front And (2) in the Back

Fig. 6

SPO12 Hummer Supplement Instructions

Warning

DO NOT install this lift in a pit or depression due to fire or explosion risks.
1. Lift Location: Use architects plan when available to locate lift. Fig. 1a shows dimensions of a typical bay layout.

Lift Height: See Fig. 2 for overall lift height of each specific lift model. Add 1” min. to overall height to lowest obstruction.

Overhead Assembly

![Fig. 2](image)

Overhead Mounting Bracket: Install Mounting Brackets to column extensions as shown, Fig. 2.

![Fig. 3](image)

3. Column Extensions: While column is on the ground, install column extensions using (4) 3/8”-16NC x 1” lg. Carriage Bolt and Flanged Locknut, Fig. 3 & Fig. 1b. Use (2) 3/8”-16NC x 2-1/2” lg. Carriage Bolt and Flanged Locknut to attach the tie bar and the column extension together at the column’s uppermost holes, Fig. 3. The tie bar is positioned on the outside of the column extension. Adjust the column extensions plumb.

4. Lift Setting: Position columns in bay using dimensions shown in Fig. 1a. Place column with power unit mounting bracket on vehicle passenger side of lift. Both column base plate backs must be square on center line of lift. Notches are cut into each base plate to indicate center line of lift. Use appropriate equipment to raise carriage to first latch position. Be sure locking latch is securely engaged.

IMPORTANT: All star washers are to be mounted on the right side column to ensure grounding of overhead limit switch. Star washers are not needed when mounting to left side column. Notice the column extension mounting, Fig. 3 and overhead limit switch mounting as well in Fig. 3 & Fig. 6.

Note: See Pg. 3 for Hummer (5W0/7W0 Series) Lifts.

WARNING DO NOT install this lift in a pit or depression due to fire or explosion risks.

2. Latch Cable Guides: Install the latch cable conduit guide brackets to column extensions with (1) 1/4”-20NC x 1” HHCS and 1/4”-20NC Flanged Locknuts, Fig. 3. HHCS should go through hole nearest the edge as shown, Fig. 3.
5. Concrete and Anchoring:

IMPORTANT Reference IN20294 if Sprinter long arms are going to be used for this installation or if the lift will possibly be retro-fit with them in the future. Different concrete and anchoring requirements are required.

Drill (14) 3/4” dia. holes in concrete floor using holes in column base plate as a guide. See Figs. 4 and 5 for hole requirements.

CAUTION DO NOT install on asphalt or other similar unstable surfaces. Columns are supported only by anchors in floor.

IMPORTANT: Using the horse shoe shims provided, shim each column base until each column is plumb. If one column has to be elevated to match the plane of the other column, full size base shim plates should be used (Reference Shim Kit). Recheck columns for plumb. Tighten anchor bolts to an installation torque of 110 ft-lbs. Shim thickness MUST NOT exceed 1/2” when using the 5-1/2” long anchors provided with the lift.

If anchors do not tighten to 110 ft-lbs. installation torque, replace concrete under each column base with a 4’ x 4’ x 6” thick 3000 PSI minimum concrete pad keyed under and flush with the top of existing floor. Let concrete cure before installing lifts and anchor.

Run nut down just below impact section of bolt. Drive anchor into hole until nut and washer contact base.

Tighten nut with Torque wrench to 110 ft.-lbs. (149 Nm).

Fig. 4

Shims (1/2"(12.7mm) Max.)

12K 2-Post Lift Anchor Installation Reference Guide

<table>
<thead>
<tr>
<th>Anchor:</th>
<th>Min Concrete Thickness</th>
<th>Min Edge Distance</th>
<th>Min Anchor Embedment</th>
<th>Installation Anchor Torque Ft-lbs</th>
<th>Min Concrete PSI Strength - For All Standards</th>
<th>Concrete pad Size If Concrete Does Not Meet Requirements</th>
<th>Maintenance Torque Values</th>
<th>SEISMIC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hilti Kwik Bolt III (3/4" x 5-1/2")</td>
<td>4-1/4" (108mm)</td>
<td>3-3/8" (86mm)</td>
<td>3-1/4" (83mm)</td>
<td>110</td>
<td>3000</td>
<td>4'x4'x6"</td>
<td>65</td>
<td>Varies by location consult with your structural engineer and manufacturer’s representative.</td>
</tr>
<tr>
<td>Hilti HY200 (with HAS threaded rod)</td>
<td>5-1/4" (134mm)</td>
<td>1-3/4" (45mm)</td>
<td>3-1/2" (89mm)</td>
<td>100 / less than 3-3/4" edge distance use Torque Value of 30 FT/LBS</td>
<td>3000</td>
<td>4'x4'x6"</td>
<td>N/A</td>
<td></td>
</tr>
</tbody>
</table>

*The supplied concrete fasteners meet the criteria of the American National Standard “Automotive Lifts - Safety Requirements for Construction, Testing, and Validation” ANSI/ALI ALCTV-2011, and the lift owner is responsible for all charges related to any additional anchoring requirements as specified by local codes. Contact customer service for further information at: 800.640.5438

Fig. 5

NOTE: If more than 2 horse shoe shims are used at any of the column anchor bolts, pack non-shrink grout under the unsupported area of the column base. Insure shims are held tightly between the baseplate and floor after torquing anchors.
6. **Overhead Assembly**: Adjust overhead to 114” between centerline of sheave pins, Fig. 6. Install (4) 3/8”-16NC x 2-3/4” Flanged HHCS & Flanged Locknuts, do not tighten. Install overhead stiffener angle inside center of overhead using (4) 3/8”-16NC x 1” Flanged HHCS and Flanged Locknuts, see Fig. 6. Slide switch box over switch bar ensuring lockout holes face the power unit column. Use (2) 1/4”-20NC x 2-3/4” lg. HHCS, (2) flat washers, (2) 3/4” spacers, and (2) 1/4” star washers and nuts to mount switch box to overhead, Fig. 7a and Fig. 7b.

7. For single phase and three phase lifts with push button control box: Insert (2) 1/4”-20NC x 2-3/4” HHCS through pivot hole in end of switch bar. Insert opposite end of bar through slot in switch mounting bracket. Then add spacers between the limit switch box and the overhead, Fig. 6, using (2) spacers and 1/4”-20NC Locknut. Tighten Hex bolt leaving 1/16” gap between the spacer and the overhead assembly.

Note: For Fig. 6, see Pg. 4 for Hummer (5W0/7W0 Series) Lifts.

1 & 3 Phase Lifts

![Diagram of Overhead Assembly](Fig. 6)

- (2) 3/8”-16NC x 3/4” HHCS & Flanged Locknut
- (2) Spacers
- 1/4”-20NC x 2-3/4” HHCS & 1/4” Locknut
- 1/4”-20NC x 2-3/4” HHCS, Flat Washer, and Nut
- (4) 3/8”-16NC x 1” Flanged HHCS and Flanged Nuts

Hardware Detail For Overhead Assembly

Open Bar Side

- 1/4” Lock Nut
- 2 Spacers
- 1/4”-20NC x 2-3/4” HHCS

Switch Box Side

- 1/4” Lock Nut
- 1/4” Star Lock Washer
- 1/4” Flat Washer
- 1/4”-20NC x 2-3/4” HHCS

![HOLE DETAIL](SPO12)
8. **Overhead:** Install overhead assembly to Mounting Bracket with (2) 3/8"-16NC x 3/4" Flanged HHCS, (2) 3/8-16NC flanged locknut, Fig. 7c. Ensure limit switch box is mounted on power unit side. Tighten bolts at center of overhead assembly.

9. **Power Unit:** Put the (4) 5/16"-18NC x 1-1/2" flanged locking HHCS thru holes in power unit bracket using Push-Nuts to hold in place, Fig. 8a. Mount unit with motor up to column bracket and install (2) 5/16" Flanged locking Nuts. Install and hand tighten Branch Tee to pump until O-ring is seated. Continue to tighten the locknut to 10-15 ft-lbs., or until the nut and washer bottom out against the pump manifold. **NOTE:** You may still be able to rotate the Branch Tee. This is acceptable unless there is seepage at the O-ring. If so, slightly tighten the locknut.

CAUTION Over tightening locknut may tear O-ring or distort threads in pump manifold outlet.

10. **Hoses:** Clean adapters and hose. Inspect all threads for damage and hose ends to be sure they are crimped, Fig. 8b. Install hose and hose clamps, Fig. 9a & Fig. 9d.

Flared Fittings Tightening Procedure

1. Screw the fittings together finger tight. Then, using the proper size wrench, rotate the fitting 2-1/2 hex flats.

IMPORTANT Flare seat MUST NOT rotate when tightening. Only the nut should turn.

2. Back the fitting off one full turn.

3. Again tighten the fittings finger tight; then using a wrench, rotate the fitting 2-1/2 hex flats. This will complete the tightening procedure and develop a pressure tight seal.

CAUTION Overtightening will damage fitting resulting in fluid leakage.
Adapter & Hose Installation (see Fig. 9a)
1. Install Pc. (2) with metal hose clamps, on power unit column side connecting it to the cylinder (1) first.
2. Install Pc. (3) with plastic hose clamps starting at opposite column cylinder (1) and working toward the power unit column. All excess hose should be at bends & inside overhead assembly.
3. Install Pc. (4) into power unit.
4. Connect Pc. (2) & Pc. (3) to Tee (4).

NOTE: Route Power Unit hose inside columns using slots provided at column base, Fig. 9b. Route Overhead Hose in column channel on outside of column, Fig. 9b. Overhead hose goes over top end of overhead assembly, Fig. 11a.

11. Equalizing Cables
A) Refer to Fig. 10a for the general cable arrangement. First, run a cable end up through the small hole in the lower tie-off plate. Fig. 10b.
B) Push the cable up until the stud is out of the carriage top opening.
C) Run a nylon insert locknut onto the cable stud so 1/2" (13mm) of the stud extends out of the locknut.
D) Pull the cable back down. Fig. 10b
E) Run cable around the lower sheave, then up and around overhead sheave and across and down to the opposite carriage. Fig. 10a.
F) Fasten the cable end to the carriage upper tie-off bracket. Tighten the locknut enough to apply light tension to the cable.
G) Repeat procedure for the second cable. Complete lift assembly. Adjust the tension of both cables during the final adjustments.
NOTE: Overhead hose crosses and runs down approach side of left column to cylinder.

![Diagram showing hose attachment to column](Fig. 9b)

ITEM	**QTY.**	**DESCRIPTION**
1 | 2 | Hydraulic Cylinder
2 | 1 | Power Unit Hose
3 | 1 | Overhead Hose
4 | 1 | Branch Tee
5 | 2 | Metal Hose Clips
6 | 8 | Plastic Hose Clips
*6 | 3/8-16NC x 3/4" lg. Carriage Bolts
*6 | 3/8"-16NC Flanged Locknuts
#4 | 3/8-16NC x 3/4" lg. Flanged HHCS
#4 | 3/8"-16NC Flanged Locknuts

To set up cables for a low ceiling (LC), use 3/4" SCH 80 steel pipe spacers (not included) at the lower cable tie off. The lengths required are as follows:

- **4" Lower Height = 8"** (203mm) long pipe
- **8-1/2" Lower Height = 17"** (432mm) long pipe

![Diagram showing cable tie off](Fig. 10a)

![Diagram showing cable tie off](Fig. 10b)
12. Locking Latch Cable

A) Install latch cable sheave and retaining rings in upper slot of power unit column as shown, Fig. 11c.

B) Slip loop end of cable over end of shoulder screw on right side latch control plate, Fig. 11c.

C) Feed the other end of the cable through the latch cable sheave slot making sure that the cable is running under the bottom side of the latch cable sheave and inside the right column, Fig. 11c.

D) Attach latch cable conduit guide brackets to overhead as shown, Fig. 11a & Fig. 11b. Always use the holes on the approach side of the lift. HHCS should be in hole nearest the center of the overhead, Fig. 11b.

E) Route cable up inside column and through the latch cable guide, Fig. 11a & Fig. 12.

IMPORTANT Using wire ties provided, tie off cable guide to column extension as shown, Fig. 11a. Guide must be attached in hole closest to the outside edge of the column on the NON-APPROACH side.

F) Continue routing cable to the left column latch cable guide, Fig. 11a & Fig. 12, routing the cable through the left column latch cable guide, Fig. 11a.

G) Bring the cable down inside the left column and feed the end of the cable through the lower latch cable sheave slot so that the cable is now back outside the column, Fig. 13.

H) Install latch cable sheave and retaining rings in lower slot of non-power unit column as shown, Fig. 13.

I) Route cable under the bottom side of the latch cable sheave, Fig. 13.

J) At this point you MUST install the latch handle, jam nut, and right column latch cover Fig. 11c & Fig. 14. Install latch handle ball, Fig. 14.
Shoulder Bolt

Cable Clamp

Feed cable up through Cable Clamp, loop over end of shoulder bolt and feed back down through Cable Clamp.

(2) 3/8" Retaining Rings

Latch Cable Sheave

K) Insert cable in cable clamp along one side, loop around shoulder screw and back down, inserting cable along other side of cable clamp, Fig. 13. Place top back on clamp, barely tightening.

L) Next, pull the control plate down, Fig. 12 & Fig. 13, to eliminate any clearance between the control plate slot and the latch dog pin, Fig. 12.

M) Using Pliers, pull cable tight and secure the clamp close to the shoulder screw. Tighten clamp.

Fig. 12

Latch Cable Guide

Latch Cable

Notice the clearance removed between Control Plate Slot and Latch Dog Pin.

Right Column

Fig. 13

Shoulder Bolt

Feed cable up through Cable Clamp, loop over end of shoulder bolt and feed back down through Cable Clamp.

Fig. 14

5/16-18NC x 3/8" lg. PHMS

Latch handle MUST be positioned at the top of the latch control cover.
13. **Electrical:** Have a certified electrician run appropriate power supply to motor, Fig. 15 & 16. Size wire for 20 amp circuit. For single phase 4HP motor wire for 30 amp circuit. See Motor Operating Data Table.

CAUTION Never operate the motor on line voltage less than 208V. Motor damage may occur.

IMPORTANT: Use separate circuit for each power unit. Protect each circuit with time delay fuse or circuit breaker. For single phase 208-230V, use 20 amp fuse. For single phase 4HP motor use 30 amp fuse. Three phase 208-240V, use 20 amp fuse. For three phase 400V and above, use 10 amp fuse. For wiring see Fig. 15, Fig. 16, and Fig.16b. All wiring must comply with NEC and all local electrical codes.

Note: 60Hz. single phase motor CAN NOT be run on 50Hz. line without a physical change in the motor.

NOTE: Assure cord used for connection between the overhead switch and power unit is of the type specified in:

UL201, Sections 10.1.1.3 & 10.1.1.4

(Example: SO, G, STO) Size for 25 amp circuit. See UL 201, Section 15 for proper wiring requirements for this connection.

Single Phase Power Unit

<table>
<thead>
<tr>
<th>MOTOR OPERATING DATA TABLE - SINGLE PHASE</th>
</tr>
</thead>
<tbody>
<tr>
<td>LINE VOLTAGE</td>
</tr>
<tr>
<td>208-230V 50Hz.</td>
</tr>
<tr>
<td>208-230V 60Hz.</td>
</tr>
</tbody>
</table>

Note: 60Hz. Single phase motor CAN NOT be run on 50Hz. line without a physical change in the motor.

Connect supply to wires in box as per Fig. 16. Attach ground wire to screws provided.
NOTE: Two Different Drum Switches were used please select one of the two options below.
Newer model three phase lifts use the push button control box with contactor. Its instructions follow the Drum Switch instructions.

NOTES:
1. Unit not suitable for use in unusual conditions. Contact Rotary for moisture and dust environment duty unit.
2. Control Box must be field mounted to power unit.
3. Motor rotation is counter clockwise from top of motor.

Three Phase Power Unit

MOTOR OPERATING DATA TABLE - THREE PHASE

<table>
<thead>
<tr>
<th>LINE VOLTAGE</th>
<th>RUNNING MOTOR VOLTAGE RANGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>208-240V 50/60Hz.</td>
<td>197-253V</td>
</tr>
<tr>
<td>400V 50Hz.</td>
<td>360-440V</td>
</tr>
<tr>
<td>440-480V 50/60Hz.</td>
<td>396V-528V</td>
</tr>
<tr>
<td>575V 60Hz.</td>
<td>518V-632V</td>
</tr>
</tbody>
</table>

Three Phase Power Unit

Capacitor Box Attachment

Option One

- Capacitor Box To Power Unit
- Re-seal Between Box And Spacer With Silicone Sealer
- Gasket
- Drum Switch And Cover
- (4) M5 x 45 PHMS, Plated

Option Two

- Capacitor Box Attachment
- (4) M5 x 10 PHMS, Plated

Current Pin Layouts

- L1
- L2
- L3
- U1
- V1
- W1
- U2
- V2
- W2

Older Pin Layouts

- T1
- T2
- T3
- T4
- T5
- T6
- T7
- T8

FOR 3 Ø POWER UNITS: Attach Box using M5 x 10 PHMS, Plated.

Fig. 16
14. 3Ø Control Box Installation:
A) Attach Mounting Bracket on column, as shown in Fig. 16a, using (1) 5/16"-18NC x 1/2" Socket Head Counter Sunk Machine Screw, (2) 5/16"-18NC x 1/2" HHCS, and (2) 5/16" Flat Washers.
B) Attach Control Box to Bracket using (4) 1/4"-20NC x 1/2" HHCS, (4) 1/4" Flat Washers, and (4) 1/4" Star Washers.
C) Route cord through strain relief on motor and connect per table on the bottom of page 15.

Note:
The contactor in the control box has a 480V coil. For installations where the electric supply is 230V, the coil must be replaced with the extra 230V coil shipped with the control box. For 575V electric supply, the coil must be replaced with the extra 575V coil shipped with the lift.
15. **Oil Filling & Bleeding:** Use Dexron III ATF, or Hydraulic Fluid that meets ISO 32 specifications. Remove fill-breather cap, Fig. 8a. Pour in (8) quarts of fluid. Start unit, raise lift about 2 ft. Open cylinder bleeders approximately 2 turns, Fig. 9a.

Close bleeders when fluid streams. Torque values for the bleeders are 15 ft. lb. minimum and 20 ft lb. maximum. Fully lower lift. Add more fluid until it reaches the MIN_____ mark on the tank. Replace fill-breather cap. **CAUTION** If fill-breather cap is lost or broken, order replacement. Reservoir must be vented.

16. **Overhead switch:** Check overhead switch assembly to assure that switch bar is depressing switch plunger sufficiently to actuate the switch. The overhead switch is wired normally open, see Fig. 15, Fig. 16, and Fig. 16b. Lift will not operate until weight of switch bar is depressing switch plunger. Verify that Power Unit stops working when switch bar is raised, and restarts when the bar is released.

17. **Arms & Restraints:** Before installing arms, raise carriages to a convenient height. Grease swivel arm pins and holes with Lithium grease. Slide arm into yoke, Fig. 17a. Install 1-3/4” diameter arm pin(s), Fig. 17a.

After installing arms and pins, install arm Restraint Gears as follows: Install Restraint Gear onto arm clevis, as shown, Fig. 17b. Ensure side of gear marked **TOP** is facing upward, Fig. 17b.

NOTE: **TOP** is stamped on top side of gear. You may need to pull up on the pin-ring to allow enough room to install Restraint Gear.

Then, install the (2) 3/8”-16NC x 1-1/2” HHCS (8 total for all 4 arms) and 3/8” Spring Lockwashers into the gear and arm, but do not tighten. Reference Fig. 17c, Fig. 18, and Fig. 19.

Torque the Restraint Gear bolts to 30-34 ft.-lbs.
NOTE: To check operation of arm restraints, raise carriage 1” min. from full down position. Pull up on pin-ring and adjust arms to desired position. To engage restraint, let pin-ring down allowing gear teeth to mesh together. It may be necessary to rotate arm slightly to engage gear teeth.

NOTE: Pin & Ring, Spring, & Gear Block are all preassembled.

NOTE: Once arm is installed in yoke, pull up actuator pin and swing arm fully around, being sure that the Restraint Gear and Gear Block always stay aligned. If they do not stay aligned, remove restraint gear and install in the opposite position.

Use holes marked with arrow for Right Front and Left Rear.

DO NOT use holes marked with arrows.

Use holes marked with arrow for Left Front and Right Rear.
18. **Installation of Rack for Adapter Extensions:** Install racks as shown, Fig. 20, using 5/16”-18NC x 3/8” PHMS.

19. **Door Bumper Installation:**
 1) Press long bumper on column edge, Fig. 21a.
 2) Press short bumper on top edge of carriage tube, Fig. 21a.

20. **Latch Cable Adjustment:**
 A) Check to make sure the latch will properly engage and disengage. *Slowly* release the latch handle. A 1/8” gap between the top of the latch dog and the column is allowable.
 B) When raising, listen to latches to be sure that both latch dogs fall into latch slots. If they do not, loosen clamp and adjust tension as necessary.
 C) Install left latch cover using 5/16-18NC x 3/8” lg PHMS.

21. **Pressure Test:** Run lift to full rise and keep motor running for 5 seconds. Stop and check all hose connections. Tighten or reseal if required. Repeat air bleeding of cylinders.
22. Equalizer Cable Adjustments: Raise lift to check equalizer cable tension. Below carriage, grasp adjacent cables between thumb and forefinger, with about 15 lbs. effort you should just pull the cables together. Adjust at upper tie-offs Fig. 21b.

23. Latch Release Decal: Install latch release decal on cover above latch release handle, Fig. 22.

24. Pinch Point Decal Location: Install enclosed pinch point decals. Place (1) decal on each column, Fig. 23.

25. Wheel Spotting Dish: Position wheel spotting dish as illustrated in Fig. 1. Drill (2) 3/8” holes 2-1/2” deep in concrete floor using holes in wheel spotting dish as guide. Drive both anchors, provided, into concrete to secure dish.

26. Upon completion of the assembly of the lift, the lift is to be operated to assure proper function. Observe for locks operating in all locking positions, each side lifts equally, hydraulics do not leak, all electrical controls function as labeled, all pneumatics are functional and leak free, ramps rotate freely (if applicable), and proper clearances with all items in bay have been maintained.

Operate the lift with a typical vehicle and observe to assure the same items for proper functioning.
Installer: Please return this booklet to literature package, and give to lift owner/operator.

Thank You

Trained Operators and Regular Maintenance Ensures Satisfactory Performance of Your Lift.

Contact Your Nearest Authorized Rotary Parts Distributor for Genuine Rotary Replacement Parts. See Literature Package for Parts Breakdown.
INSTRUCCIONES DE INSTALACIÓN

IMPORTANTE Consulte ANSI/ALI ALIS, Requisitos de seguridad de referencia para la instalación y revisión de los elevadores de vehículos previos a su instalación.

SPO12
Standard/Hummer/Sprinter
Elevador de Embrague de Superficie de Dos Postes Montado con Marco de Brazo de Oscilación

Standard (Series 500/700) Capacidad: 12.000 libras
Hummer (Series 5W0/7W0) Capacidad: 12.000 libras
Sprinter (Series 5A0/7A0 Series) Capacidad: 9.000 libras

CONDICIONES DE OPERACIÓN

El elevador no ha sido diseñado para funcionar en el exterior, y la temperatura ideal de funcionamiento está en el rango de 41°-104°F (5°-40°C).
INSTRUCCIONES DE INSTALACIÓN

AJUSTE DE ALTURA

BAJA 8-1/2”

AJUSTE DE ALTURA ESTÁNDAR

AJUSTE BAJO DE ALTURA DE 4”

AJUSTE DE ALTURA BAJA 8-1/2”

Notas:
- Ver Pág. 3 para Elevadores Hummer (Series 5W0/7W0).
- Continue a la página 7 para la instalación estándar del SP012.
Instrucciones Complementarias para el Hummer SPO12

IMPORTANTE Si usted ha ordenado un Elevador Hummer SPO12 (Series 5W0/7W0) DEBE de utilizar las siguientes medidas en lugar de las medidas de instrucción estándar en la página 2.

Fig. 1a

Elevador Hummer SPO12 (Series 5W0)

Elevador Hummer SPO12 (Series 7W0)

Fig. 1b

APROXIMACIÓN

12'-10 5/8"

7'-0" mínimo a la obstrucción o bahía más cercana. 8'-0" mínimo a la pared más cercana.

13' mínimo con mínimo para

(14) Anclas 3/4"

Trasero izquierdo

Frente derecho

27
Instrucciones Complementarias para el Hummer SP012

IMPORTANTE Si usted ha ordenado un Elevador Hummer SP012 (Series 5W0/7W0) DEBE de utilizar las siguientes medidas en lugar de las medidas de instrucción estándar en las páginas 7 & 8.

ADVERTENCIA NO instale este elevador en una fosa o superficie hueca debido a los riesgos de incendio o explosión.

Elevadores de 1 fase

(2) 3/8"-16NC x 3/4" HHCS & Contratuerca de Fijación

2 Espaciadores

1/4"-20NC x 2-3/4" HHCS & Contratuerca de 1/4"

(4) 3/8"-16NC x 1" Fijador HHCS y Contratuerca de Fijación

Arandela de estrella de este lado

11-3/4"

Separador

131"
1. Ubicación del elevador: Utilice planos arquitectónicos cuando estén disponibles para ubicar el elevador. Fig. 1a muestra las dimensiones de una distribución típica de la bahía.

Altura del Elevador: Vea la Fig. 2 para la altura de elevación total de cada modelo de elevador en específico. Agregue 1” mín. a la altura total de la obstrucción más baja.

ADVERTENCIA: NO instale este elevador en una fosa o superficie hueca debido a los riesgos de incendio o explosión.

2. Guías del Cable de Seguridad: Instale los soportes de aseguramiento de los cables guía de conducción a las extensiones de la columna con (1) 1/4"-20NC x 1" HHCS y 1/4"-20NC Contratuercas de Fijación, Fig. 3. HHCS debe de pasar a través del orificio cercano a la orilla como se muestra, Fig. 3.

3. Extensiones de la Columna: Mientras la columna se encuentre en el piso, instale las extensiones de la columna utilizando (4) 3/8"-16NC x 1” largo Remache y Contratuercas de Fijación, Fig. 4 & Fig. 1b. Utilice (2) 3/8"-16NC X2-1/2” largo Remache y contratuerca de fijación para sujetar la barra de fijación y la extensión de la columna en los orificios superiores de la columna, Fig. 3. A barra de fijación se ubica en el exterior de la extensión de la columna. Ajuste las extensiones de la columna para que queden verticales.

4. Ajuste del Elevador: Posicione las columnas en la bahía utilizando las dimensiones mostradas en la Fig. 1a. Coloque la columna con el soporte de montaje de la unidad de energía al lado del vehículo de pasajeros del elevador. Ambas bases traseras de la columna deben cuadrarse a la línea central del elevador. Las muescas están cortadas en cada base para indicar la línea central del elevador. Utilice equipo apropiado para levantar los carriles a la primera posición de aseguramiento. Asegúrese de que el cerrojo se encuentre bien acoplado.

IMPORTANTE: Todas las rondanas de estrella deben de montarse en la columna del lado derecho para asegurar la conexión a tierra del interruptor del límite superior. No se necesitan las rondanas de estrella al montar la columna del lado izquierdo. Tenga en cuenta el montaje de la extensión de la columna, Fig. 3 así como el montaje del interruptor del límite superior en la Fig. 3 & Fig. 6.
5. Concreto y Anclaje:

IMPORTANTE Consulte IN20294 si se van a utilizar los brazos largos del Sprinter para esta instalación o si el elevador posiblemente será re-ajustado con ellos en el futuro. Se requieren diferentes tipos de concreto y anclaje.

Taladre (14) orificios de 3/4” de diámetro en el piso de concreto utilizando como guía los orificios en la base de la columna. Vea las Figuras 4 y 5 para conocer los requisitos de orificios.

PRECAUCIÓN NO las instale sobre el asfalto ni sobre otra superficie inestable similar. Las columnas están soportadas sólo por los anclajes al piso.

IMPORTANTE: Utilizando las calzas de herradura que se proporcionan, calce cada base de la columna hasta que cada columna esté alineada. Si una columna se tiene que elevar para alinearse con la base de la otra columna, deben de utilizarse calzas del tamaño completo de la base (Consulte el Paquete Calzas). Vuelva a revisar que las columnas estén totalmente verticales. Ajuste los tornillos del ancla a una instalación de torsión de 110 ft-lbs. El espesor de las calzas NO DEBE exceder 1/2” al utilizar las anclas de 5-1/2” de largo que se incluyen con el elevador.

Si los anclajes no se aprietan con un par de 110 pie-lb, sustituya el concreto bajo la base de cada columna con una losa de concreto de espesor de 4’ x 4’ x 6 y 3000 PSI como mínimo introducida bajo el piso y al ras con éste. Deje que el concreto cuaje antes de instalar los elevadores y el ancla.
Guía de referencia para la instalación de anclaje del elevador de 2 postes 12K

<table>
<thead>
<tr>
<th>Anclaje</th>
<th>Mín. Concreto</th>
<th>Distancia mínima del borde</th>
<th>Incrustación mínima del anclaje</th>
<th>Instalación del anclaje torsión pies-lbs</th>
<th>Resistencia mínima del concreto en PSI - Para todos los estándares</th>
<th>Almohadilla de contrato Tamaño si el concreto no cumple con los requisitos</th>
<th>Mantenimiento Torque Valores</th>
<th>SISMICO</th>
</tr>
</thead>
<tbody>
<tr>
<td>Perno Hilti Kwik III (3/4" x 5-1/2")</td>
<td>4-1/4" (108mm)</td>
<td>3-3/8" (86mm)</td>
<td>3-1/4" (83mm)</td>
<td>110</td>
<td>3000</td>
<td>4’x4’x6’</td>
<td>65</td>
<td>Varía por ubicación, consulte con el ingeniero estructural y representante del fabricante.</td>
</tr>
<tr>
<td>Hilti HY200 (con varilla roscada HAS)</td>
<td>5-1/4" (134mm)</td>
<td>1-3/4" (45mm)</td>
<td>3-1/2" (89mm)</td>
<td>100 / menos de 3-3/4" de distancia del borde</td>
<td>Use un valor de torsión de 30 PIES/LB</td>
<td>3000</td>
<td>4’x4’x6’</td>
<td>N/C</td>
</tr>
</tbody>
</table>

"Las fijaciones de concreto provistas cumplen con los criterios del Estándar Nacional Estadounidense "Elevadores de automoción - Requisitos de seguridad para construcción, prueba y validación", ANSI/ALIALCTV-2011, y el propietario del elevador es responsable de todos los requisitos de anclaje según lo especificado por los Comuníquese con servicio al cliente para obtener más información al: 800.640.5438

NOTA: Si se utilizan más de 2 calzas de herradura en alguno de los pernos de anclaje de la columna, compacte con colada antiencogimiento por debajo del área sin soporte de la base de la columna. Asegúrese de que las calzas estén bien sujetas entre la placa base y el piso después de torcer las anclas.
6. **Montaje Superior:** Ajuste por arriba a 114" entre la línea central de los pernos de la polea, Fig. 6. Instale (4) 3/8"-16NC x 2-3/4" Fijadores HHCS & Contratuercas de Fijación, no las apriete. Instale el ángulo de refuerzo superior dentro del centro del de arriba utilizando (4) 3/8"-16NC x 1" Fijadores HHCS y Contratuercas de Fijación, ver Fig. 6. Deslice la caja de conmutación sobre la barra del interruptor para asegurar que los orificios pre-perforados apunten hacia la columna con la unidad de alimentación. Utilice (2) 1/4"-20NC x 2-3/4" de largo HHCS, (2) rondanas planas, (2) 3/4" espaciadores, y (2) 1/4" rondanas de estrella y tuercas para montar la caja del interruptor por encima, Fig. 7a and Fig. 7b.

Nota: Vea la Pág. 4, Fig. 6., para Elevadores Hummer (Series 5W0/7W0)

7. **Para elevadores de una y tres fases, con caja de control con botón:** Inserte (2) 1/4"-20NC x 2-3/4" HHCS a través del orificio pivote al final de la barra del interruptor. Inserte el lado opuesto de la barra a través de la ranura en el soporte de montaje del interruptor. Luego agregue los espaciadores entre el límite de la caja del interruptor y de la altura, Fig. 6, utilizando (2) espaciadores y Contratuercas de 1/4"-20NC. Apriete el tornillo Hexagonal dejando un espacio de 1/16" entre el espaciador y el ensamblaje superior.
8. **Superior:** Instale el ensamblaje superior al Soporte de Montaje con (2) 3/8”-16NC x 3/4” Fijadores HHCS, (2) 3/8-16NC contratuerca de fijación, Fig. 7c. Asegúrese de que la caja del interruptor límite esté montada del lado de la unidad de energía. Apriete los tornillos al centro del ensamblaje superior.

9. **Unidad de energía:** Coloque los (4) 5/16”-18NC x 1-1/2” la contratuerca de fijación HHCS a través de los orificios en el soporte de la unidad de energía utilizando Tuercas de Presión para mantenerlo en su lugar, Fig. 8a. Monte la unidad con el motor hacia arriba del soporte de la columna e instale (2) 5/16” rondanas de estrella y 5/16” contratuerca de fijación. Instale y apriete manualmente la Bifurcación T para introducir hasta que el anillo O esté sellado. Continue apretando la contratuerca a 10-15 ft-lbs., o hasta que la tuerca y la rondana toquen fondo contra la bomba múltiple. **NOTA:** Podría todavía ser capaz de girar la Bifurcación T. Esto es aceptable a menos de que haya filtración hacia el anillo O. De ser así, apriete suavemente la contratuerca.

PRECAUCIÓN Sobreapretar la contratuerca podría romper el anillo O o deformar los hilos en la salida de la bomba múltiple.

10. **Mangueras:** Limpie los adaptadores y la manguera. Inspeccione todos los hilos por daños así como las terminaciones de la manguera para asegurarse de que estén rizadas, Fig. 8b. Instale la manguera y las abrazaderas de la manguera, Fig. 9a & Fig. 9d.

Procedimiento de apriete de las conexiones abocardadas

1. Conecte los accesorios apretando con la mano. Entonces, usando la llave del tamaño apropiado, apriete las conexiones mediante los planos hexagonales de 2-1/2.

IMPORTANTE El asiento de enderezamiento NO DEBE girarse al ajustarse. Debe girar solamente la tuerca.

2. Hágala retroceder entonces una vuelta completa.

3. Apriete de nuevo las conexiones con la mano; entonces, usando una llave, gire la conexión por los planos hexagonales de 2-1/2. Esto completará el procedimiento de apriete y desarrollará un sello hermético.

PRECAUCIÓN El apriete excesivo dañará la conexión, dando como resultado fugas del fluido.
Empuje las tuercas para sostener los tornillos a los soportes.

Llene la Tapa del Respirador

Utilice (4) 5/16"-18NCx1-1/2" lg. Tuercas HHCS y contratuerca de fijación

adaptación & instalación de la manguera (vea Fig. 9a)
1. Instale la pieza (2) con las abrazaderas de la manguera, del lado de la columna de la unidad de energía conectándola al cilindro (1) primero.
2. Instale la pieza (3) con las abrazaderas plásticas para manguera comenzando en el cilindro de la columna opuesta (1) y trabajando hacia la columna de la unidad de energía. Todo el exceso de manguera debe estar en las curvas & dentro del ensamblaje superior.
3. Instale la pieza (4) en la unidad de energía.
4. Conecte la pieza (2) y la pieza (3) a la Te (4).

NOTA: Dirija la manguera de la Unidad de Energía dentro de las columnas utilizando las ranuras proporcionadas en la base de la columna, Fig. 9b. Dirija la Manguera Superior en el canal de la columna al exterior de la columna, Fig. 9b. La manguera superior va sobre la terminación superior del ensamblaje superior, Fig. 11a.

11. Cables de Ecuallización
A) Consulte la Fig. 10a sobre el arreglo general del cable. Primero, pase un cable con la terminación hacia arriba a través del pequeño orificio en la base inferior. Fig. 10b.
B) Presione el cable hacia arriba hasta que el tope se encuentre fuera de la abertura superior del carril.
C) Pase una contratuerca insertada con un nailon sobre el tope del cable para que 1/2" (13mm) del tope se extienda por fuera de la contratuerca.
D) Jale el cable hacia atrás. Fig. 10b
E) Pase el cable alrededor de la polea inferior, luego por arriba y alrededor de la polea superior y a través y por debajo del carril opuesto. Fig. 10a.
F) Ajuste el final del cable al soporte superior del carril. Apriete la contratuerca lo suficiente para aplicar tensión ligera al cable.
G) Repita el procedimiento para el segundo cable. Completar el ensamblaje del elevador. Ajuste la tensión de ambos cables durante los ajustes finales.
NOTA: La manguera superior cruza y pasa por el lado inferior de la columna izquierda aproximándose al cilindro.

La manguera pasa por debajo aproximándose al lado inferior del cilindro en la columna izquierda.

Purgadores de cilindro

Valor de torsión
15 pies-lb. Mínimo
20 pies-lb. Máximo

ARTÍCULO CANT. DESCRIPCIÓN
1 2 Cilindro Hidráulico
2 1 Manguera de la unidad de potencia
3 1 Manguera Superior
4 1 Te dividida
5 2 Sujetadores de metal de la manguera
6 8 Sujetadores de plástico de la manguera
*6 3/8-16NC x 3/4" largo Remaches
*6 3/8"-16NC Contratuercas de Fijación
#4 3/8-16NC x 3/4" largo HHCS de fijación
#4 3/8"-16NC Contratuercas de Fijación

Para ajustar los cables para techo bajo (LC), use separadores de tubos de acero de 3/4" SCH 80 (no incluidos) en la unión inferior de cables. Las longitudes requeridas son las siguientes:

Altura inferior 4" - 8" (203mm) tubo largo
Altura inferior 8-1/2" = 17" (432mm) tubo largo

Separador de tubo de acero 3/4" (19mm) ESQUEMA 80 para techo bajo

Vínculo del Cable Superior& 5/8" Contratuercas Insertada con Nailon

Vínculo del Cable Inferior& 5/8" Contratuercas Insertada con Nailon

columna utilizando 3/8"-16 NC x 3/4" Remaches, Contratuercas de Fijación, y Sujetadores de Manguera

Cubierta de polea
12. **Cable del Cierre de Seguro**

A) Instale la polea del cable de seguridad y mantenga los anillos en la ranura superior de la columna de la unidad de energía como se muestra, Fig. 11c.

B) Deslice la terminación ovalada del cable por encima del tornillo de hombro al lado derecho de la placa de control de seguridad, Fig. 11c.

C) Conecte la otra terminación del cable a través de la ranura de la polea del cable de seguridad asegurándose de que el cable esté pasando por el lado inferior de la polea del cable de seguridad y dentro de la columna derecha, Fig. 11c.

D) Una los soportes guía del conducto del cable de seguridad a la parte superior como se muestra, Fig. 11a & Fig. 11b. Utilice siempre los orificios del lado de acceso del elevador. HHCS debe de estar en el orificio más cercano al centro de la parte superior, Fig. 11b.

E) Introduzca el cable hacia arriba por dentro de la columna y a través de la guía del cable del cierre, Fig. 11a y Fig. 12.

IMPORTANTE Utilizando los cables de amarre que se proporcionan, amarre el cable guía a la extensión de la columna como se muestra, Fig. 11a. La guía debe de estar unida al agujero más cercano al borde exterior de la columna sobre el lado QUE NO SEA EL DE ACCESO.

G) Traiga el cable por debajo y dentro de la columna izquierda e introduzca el extremo del cable a través de la ranura inferior de la polea del cable del cierre para que el cable esté ahora de nuevo fuera de la columna, Fig. 13.

H) Instale la polea del cable del cierre y mantenga los anillos de retención en la ranura inferior de la columna que no sea la de la unidad de alimentación como se muestra, Fig. 13.

I) Dirija cable por debajo del lado inferior de la polea del cable del cierre, Fig. 13.

J) En este punto DEBE instalar la manija de cierre, la tuerca de fijación y la cubierta del cierre de la columna derecha, Fig. 11c y Fig. 14. Instale la bola guía de seguridad de la columna izquierda, Fig. 11a.

IMPORTANTE Utilizando los cables de amarre que se proporcionan, amarre el cable guía a la extensión de la columna como se muestra, Fig. 11a. La guía debe de estar unida al agujero más cercano al borde exterior de la columna sobre el lado QUE NO SEA EL DE ACCESO.

F) Continue dirigiendo cable al cable guía de seguridad de la columna izquierda, Fig. 11a y Fig. 12, dirigiendo el cable a través del cable...
Tornillo de Hombro
Abrazadera del Cable
Introduzca el cable a través de la Abrazadera del Cable, enróllelo sobre la terminación del tornillo de hombro y regreselo hacia atrás a través de la Abrazadera del Cable.

(2) 3/8" Anillos de Retención
Polea del Cable de Seguridad
La manija de seguridad DEBE estar posicionada en la parte superior de la cubierta de control de seguridad.
Manija Esférica

K) Inserte el cable en la abrazadera del cable a lo largo de un lado, enróllelo alrededor del tornillo y dirijalo de nuevo hacia abajo, insertando el cable a lo largo del otro lado de la abrazadera del cable, Fig. 13. Coloque la parte superior trasera sobre la abrazadera, apretándola ligeramente.

L) A continuación, tire hacia abajo de la placa de control, Fig. 12 y Fig. 13, para eliminar cualquier espacio entre la ranura de la placa de control y el pasador del perno de cierre, Fig. 12.

M) Utilizando pinzas, tire del cable hasta ajustarlo y asegure la abrazadera cerca del tornillo del escalón. Apriete la abrazadera.
13. **Eléctrico:** Deje que un electricista certificado realice la instalación de energía al motor, Fig. 15 y 16. La sección de los conductores debe ser la apropiada para un circuito de 20 amp. CABLE para motor monofásico de 4HP para circuito de 30 amp. Consulte la Tabla de Datos de Operación del Motor.

PRECAUCIÓN Nunca opere el motor con un voltaje de línea menor de 208V. Podría ocurrir daño al motor.

IMPORTANTE: Utilice circuitos separados para cada unidad de alimentación. Proteja cada circuito con fusibles de acción retardada o interruptores automáticos. Para monofase de 208-230V, utilice fusible de 20 amp. Para motor monofásico de 4HP utilice fusible de 30 amp. Trifase de 208-240V, utilice fusible de 20 amp. Para sistemas trifásicos de 400V y más, utilice fusibles de 10 amp. Para el cableado, consulte la Fig. 15, Fig. 16, y Fig.16b. Todo el cableado debe cumplir con el NEC y con los códigos locales.

Nota: Los motores monofásicos de 60 Hz **NO PUEDEN** funcionar en una línea de 50 Hz sin realizar cambios físicos en el motor.

NOTA: Asegúrese de que el cable utilizado para la conexión entre el interruptor superior y la fuente de alimentación sea del tipo especificado en:

UL201, Secciones 10.1.1.3 y 10.1.1.4

(Ejemplo: (SO, G, STO) Tamaño para circuitos de 25 amp. Consulte la UL 201, Sección 15 para ver los requerimientos del cableado apropiado para esta conexión.

Unidad de Alimentación Monofásica

<table>
<thead>
<tr>
<th>VOLTAJE DE LA LÍNEA</th>
<th>RANGO DE VOLTAJE DEL MOTOR EN FUNCIONAMIENTO</th>
</tr>
</thead>
<tbody>
<tr>
<td>208-230V 50Hz.</td>
<td>197-253V</td>
</tr>
<tr>
<td>208-230 V 60Hz.</td>
<td>197-253V</td>
</tr>
</tbody>
</table>

Fig. 15

Interruptor Límite Superior
Interruptor arriba
Negro
Verde
Blanco

Nota: Los motores monofásicos de 60 Hz **NO PUEDEN** funcionar en una línea de 50 Hz sin realizar cambios físicos en el motor.

IMPORTANTE: Utilice circuitos separados para cada unidad de alimentación. Proteja cada circuito con fusibles de acción retardada o interruptores automáticos. Para monofase de 208-230V, utilice fusible de 20 amp. Para motor monofásico de 4HP utilice fusible de 30 amp. Trifase de 208-240V, utilice fusible de 20 amp. Para sistemas trifásicos de 400V y más, utilice fusibles de 10 amp. Para el cableado, consulte la Fig. 15, Fig. 16, y Fig.16b. Todo el cableado debe cumplir con el NEC y con los códigos locales.

Nota: Los motores monofásicos de 60 Hz **NO PUEDEN** funcionar en una línea de 50 Hz sin realizar cambios físicos en el motor.

Tabla de Datos de Operación del Motor - Monofásico

<table>
<thead>
<tr>
<th>VOLTAJE DE LA LÍNEA</th>
<th>RANGO DE VOLTAJE DEL MOTOR EN FUNCIONAMIENTO</th>
</tr>
</thead>
<tbody>
<tr>
<td>208-230V 50Hz.</td>
<td>197-253V</td>
</tr>
<tr>
<td>208-230 V 60Hz.</td>
<td>197-253V</td>
</tr>
</tbody>
</table>

Fig. 15

Interruptor Límite Superior
Interruptor arriba
Negro
Verde
Blanco

Nota: Los motores monofásicos de 60 Hz **NO PUEDEN** funcionar en una línea de 50 Hz sin realizar cambios físicos en el motor.

PRECAUCIÓN Nunca opere el motor con un voltaje de línea menor de 208V. Podría ocurrir daño al motor.

IMPORTANTE: Utilice circuitos separados para cada unidad de alimentación. Proteja cada circuito con fusibles de acción retardada o interruptores automáticos. Para monofase de 208-230V, utilice fusible de 20 amp. Para motor monofásico de 4HP utilice fusible de 30 amp. Trifase de 208-240V, utilice fusible de 20 amp. Para sistemas trifásicos de 400V y más, utilice fusibles de 10 amp. Para el cableado, consulte la Fig. 15, Fig. 16, y Fig.16b. Todo el cableado debe cumplir con el NEC y con los códigos locales.

Nota: Los motores monofásicos de 60 Hz **NO PUEDEN** funcionar en una línea de 50 Hz sin realizar cambios físicos en el motor.

NOTA: Asegúrese de que el cable utilizado para la conexión entre el interruptor superior y la fuente de alimentación sea del tipo especificado en:

UL201, Secciones 10.1.1.3 y 10.1.1.4

(Ejemplo: (SO, G, STO) Tamaño para circuitos de 25 amp. Consulte la UL 201, Sección 15 para ver los requerimientos del cableado apropiado para esta conexión.

Unidad de Alimentación Monofásica

Tabla de Datos de Operación del Motor - Monofásico

<table>
<thead>
<tr>
<th>VOLTAJE DE LA LÍNEA</th>
<th>RANGO DE VOLTAJE DEL MOTOR EN FUNCIONAMIENTO</th>
</tr>
</thead>
<tbody>
<tr>
<td>208-230V 50Hz.</td>
<td>197-253V</td>
</tr>
<tr>
<td>208-230 V 60Hz.</td>
<td>197-253V</td>
</tr>
</tbody>
</table>

Fig. 15

Interruptor Límite Superior
Interruptor arriba
Negro
Verde
Blanco

Nota: Los motores monofásicos de 60 Hz **NO PUEDEN** funcionar en una línea de 50 Hz sin realizar cambios físicos en el motor.

PRECAUCIÓN Nunca opere el motor con un voltaje de línea menor de 208V. Podría ocurrir daño al motor.

IMPORTANTE: Utilice circuitos separados para cada unidad de alimentación. Proteja cada circuito con fusibles de acción retardada o interruptores automáticos. Para monofase de 208-230V, utilice fusible de 20 amp. Para motor monofásico de 4HP utilice fusible de 30 amp. Trifase de 208-240V, utilice fusible de 20 amp. Para sistemas trifásicos de 400V y más, utilice fusibles de 10 amp. Para el cableado, consulte la Fig. 15, Fig. 16, y Fig.16b. Todo el cableado debe cumplir con el NEC y con los códigos locales.

Nota: Los motores monofásicos de 60 Hz **NO PUEDEN** funcionar en una línea de 50 Hz sin realizar cambios físicos en el motor.

NOTA: Asegúrese de que el cable utilizado para la conexión entre el interruptor superior y la fuente de alimentación sea del tipo especificado en:

UL201, Secciones 10.1.1.3 y 10.1.1.4

(Ejemplo: (SO, G, STO) Tamaño para circuitos de 25 amp. Consulte la UL 201, Sección 15 para ver los requerimientos del cableado apropiado para esta conexión.

Unidad de Alimentación Monofásica

Tabla de Datos de Operación del Motor - Monofásico

<table>
<thead>
<tr>
<th>VOLTAJE DE LA LÍNEA</th>
<th>RANGO DE VOLTAJE DEL MOTOR EN FUNCIONAMIENTO</th>
</tr>
</thead>
<tbody>
<tr>
<td>208-230V 50Hz.</td>
<td>197-253V</td>
</tr>
<tr>
<td>208-230 V 60Hz.</td>
<td>197-253V</td>
</tr>
</tbody>
</table>

Fig. 15

Interruptor Límite Superior
Interruptor arriba
Negro
Verde
Blanco

Nota: Los motores monofásicos de 60 Hz **NO PUEDEN** funcionar en una línea de 50 Hz sin realizar cambios físicos en el motor.

PRECAUCIÓN Nunca opere el motor con un voltaje de línea menor de 208V. Podría ocurrir daño al motor.

IMPORTANTE: Utilice circuitos separados para cada unidad de alimentación. Proteja cada circuito con fusibles de acción retardada o interruptores automáticos. Para monofase de 208-230V, utilice fusible de 20 amp. Para motor monofásico de 4HP utilice fusible de 30 amp. Trifase de 208-240V, utilice fusible de 20 amp. Para sistemas trifásicos de 400V y más, utilice fusibles de 10 amp. Para el cableado, consulte la Fig. 15, Fig. 16, y Fig.16b. Todo el cableado debe cumplir con el NEC y con los códigos locales.

Nota: Los motores monofásicos de 60 Hz **NO PUEDEN** funcionar en una línea de 50 Hz sin realizar cambios físicos en el motor.

NOTA: Asegúrese de que el cable utilizado para la conexión entre el interruptor superior y la fuente de alimentación sea del tipo especificado en:

UL201, Secciones 10.1.1.3 y 10.1.1.4

(Ejemplo: (SO, G, STO) Tamaño para circuitos de 25 amp. Consulte la UL 201, Sección 15 para ver los requerimientos del cableado apropiado para esta conexión.

Unidad de Alimentación Monofásica

Tabla de Datos de Operación del Motor - Monofásico

<table>
<thead>
<tr>
<th>VOLTAJE DE LA LÍNEA</th>
<th>RANGO DE VOLTAJE DEL MOTOR EN FUNCIONAMIENTO</th>
</tr>
</thead>
<tbody>
<tr>
<td>208-230V 50Hz.</td>
<td>197-253V</td>
</tr>
<tr>
<td>208-230 V 60Hz.</td>
<td>197-253V</td>
</tr>
</tbody>
</table>
NOTA: Fueron utilizados dos interruptores de tambor diferentes; seleccione una de las dos opciones a continuación.
Los elevadores trifásicos de modelos más nuevos usan la caja de control con botón con contactor. Sus instrucciones siguen las instrucciones del interruptor de tambor.

NOTAS:
1. Unidad no es adecuada para su empleo en condiciones inusuales. Contacte a Rotary para su empleo en ambientes húmedos y polvorientos.
2. La Caja de Control debe montarse en el campo a la unidad de alimentación.
3. La rotación del motor es en sentido antihorario mirando desde la parte superior del motor.

Unidad de alimentación trifásica

<table>
<thead>
<tr>
<th>VOLTAJE DE LÍNEA</th>
<th>RANGO DE VOLTAJES DE LA OPERACIÓN DEL MOTOR</th>
</tr>
</thead>
<tbody>
<tr>
<td>208-240V 50/60Hz.</td>
<td>197-253V</td>
</tr>
<tr>
<td>400V 50Hz.</td>
<td>360-440V</td>
</tr>
<tr>
<td>440-480V 50/60Hz.</td>
<td>396V-528V</td>
</tr>
<tr>
<td>575V 60Hz.</td>
<td>518V-632V</td>
</tr>
</tbody>
</table>

Opción Uno para la Unión de la Caja del Capacitador

(4) M5 x 45 PHMS, Chapados

Energía Trifásica

INTERRUPTOR SUPERIOR

L1 L2 L3 PE

INTERRUPTOR DE TAMBOR

L1 L2 L3 PE

Distribución actual de clavijas

Distribución anterior de clavijas

Fig. 16
14. Instalación de la caja de control 3φ:
A) Conecte el soporte de montaje a la columna, como se muestra en la Fig. 16a, usando (1) 5/16”-18NC x 1/2” tornillo maquinado avellanado con cabeza ciega, (2) 5/16”-18NC x 1/2” HHCS, y (2) 5/16” arandelas planas.
B) Conecte la caja de control al soporte usando (4) HHCS de 1/4”-20NC x 1/2”, (4) arandelas planas de 1/4” y (4) arandelas de estrella de 1/4”.
C) Tienda el cable por el alivio de tensión en el motor y conecte de acuerdo con la tabla al final de la página 15.

Nota:
El contactor en la caja de control tiene una bobina de 480 V. Para instalaciones donde el suministro eléctrico es de 230 V, la bobina debe reemplazarse por la bobina adicional de 230 V enviada con la caja de control. Para el suministro eléctrico de 575 V, la bobina debe reemplazarse por la bobina adicional de 575 V enviada con el elevador.
15. Llenado de Aceite & Drenado: Utilice Dexron III ATF, o Fluido Hidráulico que cumpla con las especificaciones ISO 32. Quite la tapa del respirador, Fig. 8a. Vierta en (8) cuartos de fluido. Arranque la unidad, levante el elevador alrededor de 2 pies. Abra los drenajes del cilindro aproximadamente 2 giros, Fig. 9a.

Cierre los purgadores cuando salga el fluido. Los valores de torsión para los purgadores son 15 ft. lb. mínimo y 20 ft lb. Máximo. Baje el elevador por completo. Agregue más fluido hasta que alcance la marca MÍN____ en el tanque. Coloque nuevamente la tapa del respirador.

PRECAUCIÓN Si la tapa de respirador se pierde o se rompe, solicite un repuesto. El depósito debe ser ventilado.

16. Interruptor superior: Revise el ensamblaje del interruptor superior para asegurar que la barra del interruptor esté presionando el émbolo del interruptor suficientemente para activar el interruptor. El interruptor superior está cableado normalmente abierto, vea la Fig 15, Fig. 16 y Fig. 16b. El elevador no funcionará hasta que el peso de la barra del interruptor presione el émbolo del interruptor. Compruebe que la Unidad de Energía deje de trabajar cuando la barra del interruptor esté levantada, y reinicie cuando la barra sea liberada.

17. Brazos y Restricciones: Antes de instalar los brazos, levante los carriles a una altura conveniente. Engrase los soportes y orificios del brazo giratorio con grasa de Litio. Deslice el brazo en la unión, Fig. 17a. Instale soporte(s) del brazo de 1-3/4" de diámetro, Fig. 17a.

Después de instalar los brazos y soportes, instale los Engranajes deRestricción del brazo como sigue: Instale el Engrane de Restricción sobre la horquilla del brazo, como se muestra, Fig. 17b. Asegure que el lado del engrane marcado con SUPERIOR se encuentre posicionado hacia arriba, Fig. 17b.

NOTA: SUPERIOR está marcado en el lado de arriba del engrane. Podría necesitar jalar sobre el anillo de perno para permitir suficiente espacio para instalar el Engrane de Restricción.

Luego, instale los (2) 3/8"-16NC x 1-1/2" HHCS (8 en total para los 4 brazos) y 3/8" rondanas de Cerradura de Resorte en el engrane y el brazo, pero no las apriete. Consulte la Fig. 17c, Fig. 18, y Fig. 19.

Ajuste a torsión los tornillos del Engrane de Restricción a 30-34 ft.-lbs.
NOTA: Para revisar la operación de los restrictores del brazo, levante el carril 1" mín. desde la posición inferior. Jale el anillo de perno y ajuste los brazos a la posición deseada. Para asegurar la restricción, deje el anillo de perno abajo permitiendo que los dientes del engrane se acoplen entre sí. Podría ser necesario girar un poco el brazo para acoplar los dientes del engrane.

NOTA: El Perno & Anillo, Resorte, & Cerradura de Engrane son todos pre-ensamblados.

NOTA: Una vez que el brazo esté instalado en la unión, jale el perno del impulsor y balancee el brazo completamente, asegurándose de que el Engrane de Restricción y el Seguro de Engrane se mantengan siempre alineados. Si no se mantienen alineados, quite el engrane de restricción e instale en la posición opuesta.
18. Instalación del Estante para las extensiones del adaptador: Instale los estantes como se muestra, Fig. 20, con los PHMS de 5/16”-18NC x 3/8”.

19. Instalación del Tope de la Puerta:
1) Presione el tope largo sobre la orilla de la columna, Fig. 21a.
2) Presione el tope corto sobre la orilla superior del tubo del carril, Fig. 21a.

20. Ajuste del Cable de Seguridad:
A) Revise para asegurar que el seguro se cerrará y abrirá adecuadamente. Lentamente suelte la manija del seguro. Se permite un espacio de 1/8” entre la parte superior del seguro y la columna.
B) Al levantar, escuche los seguros para asegurarse que ambos seguros se acoplen a las ranuras de seguridad. Si no, afloje la abrazadera y ajuste la tensión como se necesite.
C) Instale la cubierta del seguro izquierdo utilizando 5/16-18NC x 3/8” lg PHMS.

21. Prueba de presión: Lleve el elevador al punto máximo de elevación y mantenga el motor funcionando por 5 segundos. Deténgalo y revise todas las conexiones de la manguera. Apriete o selle de nuevo si se requiere. Repita la purga de aire de los cilindros.
22. **Ajustes del Cable del Ecualizador:** Levante el elevador para revisar la tensión del cable de ecualización. Debajo del remache, sujete los cables adyacentes entre el pulgar y el índice, con un esfuerzo de alrededor de 15 lb. debe poder tirar de los cables. Ajuste y amarre los cables Fig. 21b.

23. **Calcomanía de Liberación de Seguros:** Instale la calcomanía de liberación de seguros en la cubierta sobre la manija de liberación de seguros, Fig. 22.

24. **Ubicación de la Calcomanía del Punto de Sujetación:** Instale la calcomanías adjuntas del punto de sujeción. Coloque (1) calcomanía en cada columna, Fig. 23.

25. **Base de la Rueda:** Coloque la base de la rueda como se muestra en la Fig. 1. Taladre (2) orificios de 3/8" y 2-1/2" de profundidad en el piso de concreto utilizando los orificios en la base de ubicación de la rueda como guía. Dirija ambas anclas, proporcionadas, dentro del concreto para asegurar la base.

26. **Al completar** el ensamblaje dele levador, el elevador debe operarse para asegurar un funcionamiento adecuado. Observe que los bloqueos funcionen en todas las posiciones de bloqueo, de manera uniforme en cada lado del elevador, que los componentes hidráulicos no tengan fugas, que todos los controles eléctricos funcionen conforme a la etiqueta, que todos los componentes neumáticos funcionen y no tengan fugas, que las rampas giren libremente (si corresponde) y se mantenga una separación apropiada con todos los elementos de la bahía.

Opere el elevador con un vehículo típico y observe para asegurar que los mismos elementos funcionan correctamente.
Instalador: Devuelva este manual al paquete de documentación y entrégueselo al propietario/operador del elevador.

Gracias

Operadores Capacitados y Mantenimiento Regular Aseguran un Funcionamiento Satisfactorio de Su Elevador.

Contacte con Su Distribuidor Autorizado de Partes Rotary más Cercano para Refacciones Rotary Originales. Consulte el Paquete de Literatura para obtener información sobre Avería de Partes.
SPO12
Standard/Hummer/Sprinter
Élévateur d’engagement de cadre avec bras oscillant montés par deux montants de surface

Standard (Séries 500/700) Capacité : 12,000 livres.
Hummer (Séries 5W0/7W0) Capacité : 12,000 livres.
Sprinter (Séries 5A0/7A0) Capacité : 9,000 livres.

CONDITIONS DE FONCTIONNEMENT
L’élévateur n’est pas conçu pour une utilisation à l’extérieur et possède une fenêtre de températures ambiantes de fonctionnement entre 41° à 104°F (5° à 40°C)

 IMPORTANT Référence ANSI/ALI ALIS, Prenez connaissance des exigences de sécurité d’installation et de maintenance des élévateurs automobiles avant l’installation.
INSTRUCTIONS D’INSTALLATION

Remarque : Voir Page 3 pour Élévateurs Hummer (Séries 5W0/7W0).

SP012 Standard (Séries 500) & SP012 Sprinter (Séries 5A0)

SP012 Standard (Séries 700) & SP012 Sprinter (Séries 7A0)

ATTENTION : Continuez à la page 7 pour l’installation de SP012 Standard.
IMPORTANT Si vous avez commandé un Élévateur Hummer SPO12 (Série 5W0/7W0), ces diagrammes DOIVENT être utilisés à la place des diagrammes d’instructions standard de la page 2.

Figure 1a

Figure 1b

SP012 Élévateurs Hummer (Séries 5W0)
SP012 Élévateurs Hummer (Séries 7W0)
AVERTISSEMENT N’installez PAS cet élévateur dans une fosse ou dans une dépression en raison d’un risque d’incendie ou d’explosion.

Élévateurs de 1 phase

(2) HHCS et contre-écrou à brides 3/8"-16NC x 3/4"

HHCS à bride et écrous à brides (4) 3/8"-16NC x 1"

1/4"-20NC x 2-3/4" HHCS & 1/4" Contre-écrous

HHCS, rondelle plate, entretoise et écrou 1/4"-20NC x 2-3/4"

IMPORTANT Si vous avez commandé un Élévateur Hummer SP012 (série 5W0/7W0), ces chiffres DOIVENT être utilisés à la place des chiffres des instructions standard aux pages 7 et 8.

Figure 2

- Assemblage suspendu
- Support de montage
- 3/8"-16NCx3/4" HHCS & Contre-écrou à bride
- Attache-barre et entretoises - utilisez (2) boulons de carrosserie 3/8"-16NCx 2,1/2" et écrous à brides
- Utilisez (2) boulons de carrosserie 3/8"-16NCx1" à l’avant et (2) à l’arrière

Figure 6

- 13'11 1/2" Dessus de l’Assemblage Suspendu (14'11 1/2" EH1)
- Élévateurs de 1 phase
- HHCS à bride et écrous à brides (4) 3/8"-16NC x 1"
- 1/4"-20NC x 2-3/4" HHCS & 1/4" Contre-écrous
- HHCS, rondelle plate, entretoise et écrou 1/4"-20NC x 2-3/4"
1. Emplacement de l’élévateur : Utilisez des plans d’architectes disponibles afin de localiser l’élévateur. Figure 1a illustre les dimensions d’une configuration de baie type.

Hauteur de l’élévateur : Voir la Figure 2 pour la hauteur globale de chaque modèle d’élévateur spécifique. Ajoutez 1” minimum à la hauteur totale à l’obstacle le plus bas.

2. Guides de verrouillage de câble : Installez les supports de guidage du conduit du verrouillage de câble sur les rallonges de colonne avec (1) écrous de blocage de 1/4”-20NC x 1” HHCS et écrous de blocage bridé de 1/4”-20NC, Figure 3. Le HHCS devrait traverser le trou le plus près du bord, comme illustré, Figure 3.

AVERTISSEMENT N’installez PAS cet appareil dans une fosse ou dans une dépression en raison d’un risque d’incendie ou d’explosion.

3. Extensions de colonne : Avec la colonne au sol, installez les extensions de colonne en utilisant (4) 3/8”-16NC x 1” Ig. Boulon du support et contre-écrou à bride, Figure 3 et Figure 1b. Utilisez (2) boulons 3/8”-16NC x 2-1/2” Lg. Boulon du support et contre-écrou à bride pour attacher la barre de liaison et l’extension de colonne ensemble aux trous les plus hauts de la colonne, Figure 3. La barre de liaison est positionnée à l’extérieur de la colonne d’extension. Ajuster les colonnes d’extension à l’aplomb.

4. Réglage de l’élévateur : Positionnez les colonnes dans la baie en utilisant les dimensions indiquées sur la Figure 1a. Placez la colonne avec le support de montage du bloc d’alimentation sur le côté du passager du véhicule de l’élévateur. Les deux dos de la plaque de base de la colonne doivent être bien droit sur la ligne médiane de l’élévateur. Des encoches sont découpées dans chaque plaque de base pour indiquer la ligne médiane de l’élévateur. Utilisez l’équipement approprié pour élever le chariot jusqu’à la première position de verrouillage. Assurez-vous que le loquet de verrouillage est bien engagé.

IMPORTANT : Toutes les rondelles en étoile doivent être montées sur la colonne de droite pour assurer la mise en terre de l’interrupteur de fin de course supérieur. Les rondelles en étoile ne sont pas nécessaires lors du montage sur la colonne latérale gauche. Notez le montage de l’extension de la colonne, Figure 3 et le montage de l’interrupteur de fin de course supérieur aussi sur la Figure 3 et la Figure 6.
5. Béton et ancrage :

IMPORTANT Référence IN20294 si des bras longs Sprinter sont utilisés pour cette installation ou si l’élévateur pourra éventuellement être rétro-ajusté avec eux dans le futur. Différentes besoins de béton et d’ancrage sont requis.

Percez (14) trous 3/4” de diamètre dans le plancher de béton en utilisant les trous dans la plaque de base de la colonne comme guide. Voir Figures 4 et 5 pour les critères de trous.

ATTENTION NE PAS installer sur le bitume ou sur toute autre surface instable semblable. Les colonnes sont supportées uniquement par les ancrages au plancher.

IMPORTANT : En utilisant les cales de sabot fournies, calez chaque base de colonne jusqu’à ce que chaque colonne soit à l’aplomb. Si une colonne doit être élevée pour correspondre au plan de l’autre colonne, des plaques de calage de base pleine grandeur doivent être utilisées (Référence : Kit de calage). Vérifiez la verticalité des colonnes. Serrez les boulons d’ancrage à un couple d’installation de 110 pi-lb. L’épaisseur des cales NE DOIT PAS dépasser 1/2” avec les ancrages de 5-1/2” de long fournis avec l’élévateur.

Si les ancrages ne se serrent pas à 110 pi-lb. de couple d’installation, remplacez le béton sous chaque base de colonne avec un tampon de béton de minimum de 4’ x 4’ x 6” d’épaisseur de 3000 PSI ancrés dessous et affleurant le haut du plancher existant. Laisser sécher le béton avant l’installation des élévateurs et des ancrages.

Abaisser l’écrou juste sous la section d’impact du boulon. Enfoncer la fixation dans le trou jusqu’à ce que l’écrou et la rondelle entrent en contact avec la base.

Serrer l’écrou à l’aide d’une clé dynamométrique de 110 pieds-livres. (149 Nm).

Guide de référence pour l’installation de la fixation du pont élévateur 12K à 2 poteaux

<table>
<thead>
<tr>
<th>Fixation : Boulon Hilti Kwik III (3/4 po x 5 1/2 po) (1,91 cm x 13,97 cm)</th>
<th>Min Béton Épaisseur</th>
<th>Distance minimal du bord</th>
<th>Profondeur d’Enfouissement minimale de la fixation</th>
<th>Installation de la fixation dynamométrique en lb·pi</th>
<th>Force de béton PSI minimale - pour toutes les normes</th>
<th>Dimension de la dalle de béton si le béton n’est pas selon les normes acceptées</th>
<th>Entretien Couple Valeurs</th>
<th>SEISMIC</th>
</tr>
</thead>
<tbody>
<tr>
<td>4-1/4 po (10,80 cm) (108mm)</td>
<td>3-3/8 po (0,86 cm) (86mm)</td>
<td>3-1/4 po (0,83cm) (83 mm)</td>
<td>110</td>
<td>3000</td>
<td>4 pi x 4 pi x 6 po (120 cm x 120 cm x 15,24 cm)</td>
<td>65</td>
<td>Varie selon l’emplacement. Demander à votre ingénieur de structure ou le représentant du manufacturier.</td>
<td></td>
</tr>
</tbody>
</table>

Hilti HY200 (avec tige HAS filetée)

| 5-1/4 po (13,34 cm) (134mm) | 1-3/4 po (0,45 cm) (45mm) | 3-1/2 po (0,89cm) (89 mm) | 100/inférieur à 3-3/4 po (9,53 cm) distance bord | 3000 | 4 pi x 4 pi x 6 po (120 cm x 120 cm x 15,24 cm) | N/A |

Les fixations de béton fournies répondent aux critères de l’American National Standard « Ponts élévateurs - exigences de sécurité pour la Construction, essais et Validation » ANSI/ALIALCTV // 2011 et le propriétaire du pont élévateur est responsable de toutes les charges afférentes au dépassement de fixation tel que spécifié par les codes locaux. Contactez le service à la clientèle pour plus de renseignements au : 800.640.5438
6. **Assemblage suspendu** : Ajuster les suspensions à 114" entre l’axe des goupilles de la poulie, Figure 6. Installez (4) 3/8"-16NC x 2-3/4" HHCS à bride et écrous à brides, ne serrez pas. Installez l’angle de raidissement de la suspension à l’aide de (4) HHCS à bride et écrous à bride de 3/8"-16NC x 1" voir Figure 6. Faites glisser le boîtier de commutation sur la barre de commutation en vous assurant que les trous de verrouillage font face à la colonne de l’unité de puissance. Utilisez (2) boulons 1/4"-20NC x 2-3/4" Lg. HHCS, (2) rondelles plates, (2) entretoises de 3/4" et (2) rondelles en étoile de 1/4" et écrous pour monter la boîte de commutation sur la suspension, Figure 7a and Figure 7b.

Remarque : Pour la Figure 6, voir page 4 pour les élévateurs Hummer (série 5W0/7W0).

Élévateurs de 1 et 3 phases

(2) HHCS et contre-écrou à brides 3/8"-16NC x 3/4"

(2) Entretoises

Contre-écrou 1/4"-20NC x 2-3/4" HHCS & 1/4"

1/4"-20NC x 2-3/4" HHCS, Rondelle plate et écrou

114"

7. Pour les élévateurs monophasés et triphasés avec boîtier de commande à bouton-poussoir : Insérez (2) 1/4"-20NC x 2-3/4" HHCS dans le trou du pivot à l’extrémité de la barre de commutation. Insérez l’extrémité opposée de la barre dans la fente du support de fixation de l’interrupteur. Ensuite ajoutez des entretoises entre le boîtier de fin de course et la suspension, Figure 6, en utilisant (2) entretoises et 1/4"-20NC contre-écrou. Serrez le boulon hexagonal en laissant un espace de 1/16" entre l’entretoise et l’assemblage suspendu.

Détail de matériel pour l’Assemblée suspendue

Côté barre ouverte

Écrou de blocage 1/4"

2 Entretoises

1/4"-20NC x 2-3/4" HHCS

DÉTAIL DE TROU

SPO12

Côté Boîte de commutation

Écrou de blocage 1/4"

Rondelle
étoilée de ce côté

Entretoise

1/4"-20NC x 2-3/4" HHCS

Remarque : Pour la Figure 6, voir page 4 pour les élévateurs Hummer (série 5W0/7W0).
8. **Suspension** : Installez l’assemblage suspendu sur le support de montage avec (2) 3/8”-16NC x 3/4” HHCS à bride, (2) écrou de blocage à brides 3/8-16NC, Figure 7c. Assurez-vous que la boîte de l’interrupteur de fin de course est montée du côté de l’unité motrice. Serrez les boulons au centre de l’assemblage suspendu.

9. **Bloc d’alimentation** : Placez les (4) 5/16”-18NC x 1-1/2” verrouillage à brides HHCS dans les trous du support du bloc d’alimentation à l’aide des écrous-poussoirs pour les maintenir en place, figure 8a. Montez l’unité avec le moteur jusqu’au support de colonne et installez (2) écrous de blocage à bride de 5/16”. Installez et serrez à la main le raccord en T à la pompe jusqu’à ce que le joint torique soit en place. Continuer à serrer l’écrou de blocage entre 10 et 15 lb/pi, ou jusqu’à ce que l’écrou et la rondelle atteignent le point bas contre le collecteur de la pompe. **REMARQUE** : Le raccord en T pourra toujours être pivoté. Cela est acceptable à moins qu’il y ait infiltration au joint torique. Si oui, serrer légèrement l’écrou de blocage.

ATTENTION Un serrage excessif du contre-écrou peut entraîner la rupture du joint torique ou déformer les filetages dans la sortie du collecteur de la pompe.

10. **Tuyaux** : Nettoyez les adaptateurs et le tuyau. Inspecter tous les filets pour la présence de dommage et les extrémités de flexible pour s’assurer qu’ils sont sertis, Figure 8b. Installez le tuyau et les colliers de serrage, Figure 9a et Figure 9b.

Procédure de serrage des raccords évasés

1. Vissez les raccords ensemble, à la main. Puis, à l’aide d’une clé de taille appropriée, tournez les vis à raccord à tête hexagonale plats de 2 ½ po.

IMPORTANT La base du siège conique NE DOIT PAS tourner pendant le serrage. Seul l’écrou doit tourner.

2. Dévisser le raccord d’un tour complet.

3. De nouveau, resserrez les raccords à la main, puis à l’aide d’une clé, tournez les vis à raccord à tête hexagonale plats de 2 ½ po. Cela complétera la procédure de serrage et établira un joint étanche à la pression.

ATTENTION Un serrage excessif endommagera le raccord et entraînera une fuite de liquide.
Les écrous à pression maintiennent les boulons aux supports.

Remplir le bouton reniflard

Utilisez (4)5/16"-18NCx1-1/2" lg. HHCS verrouillables à brides et boulons

Installation de l’adaptateur et du tuyau (voir Figure 9a)

1. Installez l’item (2) avec des colliers de serrage en métal, du côté de la colonne de l’alimentation, en le connectant d’abord au cylindre (1).
2. Installez l’item (3) avec des colliers de serrage en plastique partant du cylindre de colonne opposé (1) en se dirigeant vers la colonne de l’unité de l’alimentation. Tous les tuyaux excédentaires doivent être dans les coudes et à l’intérieur de l’assemblage suspendu.
3. Installez l’item (4) dans l’unité d’alimentation.
4. Connectez l’item (2) & Item. (3) au raccord en T (4).

REMARQUE : Acheminez le tuyau d’alimentation à l’intérieur des colonnes à l’aide des fentes prévues à la base de la colonne, Figure 9b. Acheminez le tuyau de la suspension dans le canal de la colonne à l’extérieur de la colonne, Figure 9b. Le tuyau de la suspension passe au-dessus de l’extrémité supérieure de l’assemblage suspendu, Figure 11a.

11. Câbles d’égalisation

A) Se reporter à la Figure 10a pour l’agencement général des câbles. Commencez par passer une extrémité du câble à travers le petit trou dans la plaque de fixation inférieure. Figure 10b.
B) Poussez le câble vers le haut jusqu’à ce que la tige sorte de l’ouverture supérieure du chariot.
C) Passer un contre-écrou en nylon sur la tige du câble de sorte que 1/2" (13mm) de la tige dépasse du contre-écrou.
D) Tirez le câble vers le bas. Figure 10b
E) Faites passer le câble autour de la poulie inférieure, puis vers le haut et autour de la poulie supérieure ensuite à travers et vers le bas du chariot opposé. Figure 10a.
F) Fixer l’extrémité du câble au support de fixation supérieur du chariot. Serrez le contre-écrou suffisamment pour appliquer une légère tension sur le câble.
REMARQUE : Le tuyau suspendu traverse et descend le côté d’approche de la colonne gauche au cylindre.

Le tuyau descend sur le côté d’approche du cylindre sur la colonne de gauche.

Valeurs de couple de la purge de cylindre
15 pi lb. Minimum
20 pi lb. Maximum

ARTICLE	QTÉE.	DESCRIPTION
1 | 2 | Vérin hydraulique
2 | 1 | Tuyau d’alimentation
3 | 1 | Tuyau suspendu
4 | 1 | Té de connexion
5 | 2 | Agrafes de tuyau en métal
6 | 8 | Agrafes de tuyau en plastique
*6 | 3/8-16NC x 3/4” lg. Boulons de châssis
*6 | 3/8-16NC Contre-écrous à brides
#4 | 3/8-16NC x 3/4” lg. HHCS Bridé
#4 | 3/8-16NC Contre-écrous à brides

Fixez le tuyau à la colonne à l’aide de boulons de carrosserie 3/8”-16NC x 3/4” de contre-écrous à bride et de colliers de serrage

Couverture de poulie

Pour installer les câbles pour un plafond bas (LC), utilisez des entretoises de tuyau en acier SCH 80 de 3/4” (non incluses) au niveau du collier inférieur. Les longueurs requises sont les suivantes :

- 4” Hauteur inférieure = 8” (203mm) long tuyau
- 8-1/2” Hauteur inférieure = 17” (432mm) long tuyau

3/4” (19mm) ANNEXE 80 Entretoise de tuyau en acier pour plafond bas
12. Câble du loquet de Verrouillage

A) Installez le câble du loquet de verrouillage de la poulie et les bagues de retenue dans la fente supérieure de l’unité de puissance comme indiqué, Figure 11c.

B) Glissez l’extrémité de la boucle du câble sous la tête de la vis à épaulement sur le côté droit de la plaque de commande du loquet, Figure 11c.

C) Faites passer l’autre extrémité du câble dans la fente de la poulie du câble de verrouillage en vous assurant que le câble passe sous le côté inférieur de la poulie du câble de verrouillage et à l’intérieur de la colonne droite, Figure 11c.

D) Fixez les supports de guidage du conduit du câble du loquet de verrouillage à la suspension, comme illustré, Figure 11a et Figure 11b. Toujours utiliser les trous sur le côté d’approche de l’élévateur. Le HHCS devrait être dans le trou le plus proche du centre de la suspension, Figure 11a.

E) Acheminez le câble à l’intérieur de la colonne et à travers le guide du câble du loquet de verrouillage, Figure 11a et Figure 11b.

F) Continuez à acheminer le câble vers le verrou du guide-câble de la colonne gauche, Figure 11a et Figure 12, en acheminant le câble à travers l’ouverture du guide-câble de la colonne gauche, Figure 11a.

IMPORTANT À l’aide des attaches métalliques fournies, attachez le guide-câble à l’extension de la colonne tel qu’illustré, Figure 11a. Le guide doit être fixé dans le trou le plus proche du bord extérieur de la colonne du côté NON-APPROCHE.

G) Faites descendre le câble à l’intérieur de la colonne de gauche et alimentez l’extrémité du câble à travers la fente inférieure de la poulie du câble du loquet de verrouillage de façon à ce que le câble soit à nouveau sorti de la colonne, Figure 13.

H) Installez la poulie du câble du loquet de verrouillage et les bagues de retenue dans la fente inférieure de la colonne de non puissance, tel qu’illustré, Figure 13.

I) Acheminez le câble sous le côté inférieur de la poulie du câble du loquet de verrouillage, Figure 13.

J) À ce stade, vous DEVEZ installer la poignée du loquet, l’écrou de blocage et le couvercle du loquet de la colonne droite. Figure 11c et Figure 14. Installez la boule de la poignée de verrouillage, Figure 14.
Boulon à épaulement

Serre-câble

Faites passer le câble à travers le serre-câble, passez autour de l'extrémité de la vis à épaulement et faites redescendre dans le serre-câble.

(2) Bagues de retenue 3/8"

Figure 12

Poulie du câble de verrouillage

Figure 13

Boulon à épaulement

Faites passer le câble à travers le serre-câble, passez autour de l'extrémité de la vis à épaulement et faites redescendre dans le serre-câble.

(2) Bagues de retenue 3/8"

Figure 14

5/16-18NC x 3/8" lg. PHMS

La poignée du loquet DOIT être positionnée en haut du couvercle de la commande du loquet.

Poignée boule

Figure 12

Figure 13

Figure 14

K) Insérez le câble dans le serre-câble d’un côté, faites une boucle autour de la tête de la vis à épaulement puis vers le bas, en insérant le câble le long de l’autre côté du serre-câble, Figure 13. Placer la partie supérieure sur le serre-câble, en serrant à peine.

L) Ensuite, tirez la plaque de commande vers le bas, Figure 12 et Figure 13, pour éliminer tout jeu entre la fente de la plaque de commande et la goupille du verrou, Figure 12.

M) À l’aide d’une pince, tirez le câble bien tendu et fixez le serre-câble près de la vis à épaulement. Serrez le serre-câble.
13. Circuit électrique : Demandez à un électricien certifié de poser le câblage d’alimentation électrique approprié au moteur, Figure 15, et Figure 16. Câbler avec un fil pour un circuit de 20 A. Pour le câble du moteur 4HP monophasé, un circuit de 30 ampères. Voir le tableau de données de fonctionnement du moteur.

ATTENTION : Ne jamais faire fonctionner le moteur sur une tension de ligne inférieure à 208V. Des dommages au moteur peuvent survenir.

IMPORTANT : Utilisez un circuit séparé pour chaque module d’alimentation. Protégez chaque circuit à l’aide d’un fusible de temporisation ou d’un disjoncteur. Pour une alimentation monophasée de 208 à 230 V, utiliser un fusible de 20 ampères. Pour une alimentation monophasée de 4HP, utilisez un fusible de 30 ampères. Pour une alimentation triphasée de 208 à 240 V, utilisez un fusible de 20 ampères. Pour une alimentation triphasée de 400 V et plus, utilisez un fusible de 10 ampères. Pour le câblage, voir la Figure 15, la Figure 16 et la Figure 16b. Tous les circuits doivent être conformes NEC (Code électrique national) et aux codes électriques locaux.

Remarque : Un moteur monophasé de 60Hz. NE PEUT PAS fonctionner sur une ligne de 50Hz. sans un changement physique au moteur.

REMARQUE : Assurez-vous que le câblage utilisé pour la connexion entre l’interrupteur aérien et l’unité d’alimentation est du type spécifié dans :

UL201, Sections 10.1.1.3 & 10.1.1.4

(Exemple : SO, G, STO) Taille pour circuit de 25 ampères. Voir UL 201, Section 15 pour les exigences de câblage appropriées pour cette connexion.

Module d’alimentation monophasée

<table>
<thead>
<tr>
<th>Tension d’alimentation</th>
<th>Gamme de tension de fonctionnement du moteur</th>
</tr>
</thead>
<tbody>
<tr>
<td>208 à 230 V 50 Hz</td>
<td>197-253V</td>
</tr>
<tr>
<td>208 à 230 V 60 Hz.</td>
<td>197-253V</td>
</tr>
</tbody>
</table>

Interrupteur de suspension

Tension Maximum : 277V
Courant Maximum : 25A

Interrupteur de fin de course

Brancher le fil de mise à la terre ici.

Raccordez les câbles d’alimentation dans la boîte comme indiqué sur la Figure 16. Fixer le fil de terre aux vis prévues.

REMARQUES :
1. L’appareil n’est pas adapté pour une utilisation dans des conditions inhabituelles. Veuillez communiquer avec Rotary si vous opérez dans un environnement humide et poussiéreux.
2. Le module de contrôle doit être installé sur place à l’unité d’alimentation.
3. Le moteur tourne dans le sens horaire, vu du haut du moteur.

TABLEAU DES DONNÉES DE FONCTIONNEMENT DU MOTEUR - TRIPHASÉE

<table>
<thead>
<tr>
<th>TENSION DE SECTEUR</th>
<th>PLAGE DE TENSIONS DU MOTEUR EN FONCTIONNEMENT</th>
</tr>
</thead>
<tbody>
<tr>
<td>208-240V 50/60Hz.</td>
<td>197-253V</td>
</tr>
<tr>
<td>400V 50Hz.</td>
<td>360-440V</td>
</tr>
<tr>
<td>440-480V 50/60Hz.</td>
<td>396V-528V</td>
</tr>
<tr>
<td>575V 60Hz.</td>
<td>518V-632V</td>
</tr>
</tbody>
</table>

Module d’alimentation triphasée

Figure 16
14. Installation de la boîte de contrôle 3ø :

A) Fixez le support de montage sur la colonne, tel qu’illustré à la Figure 16a, à l’aide de (1) vis à métaux à tête creuse de 5/16"-18NC x 1/2", (2) 5/16"-18NC x 1/2" HHCS, et (2) rondelles plates de 5/16".

B) Fixez la boîte de contrôle au support en utilisant (4) 1/4"-20NC x 1/2" HHCS, (4) rondelles plates 1/4" et (4) rondelles étoile 1/4".

C) Acheminez le câble à travers la décharge de traction sur le moteur et connectez-le selon la table au bas de la page 15.

Remarque :
Le contacteur dans la boîte de contrôle a une bobine de 480V. Pour les installations où l’alimentation électrique est de 230V, la bobine doit être remplacée par la bobine supplémentaire de 230V livrée avec le boîtier de commande. Pour une alimentation électrique de 575V, la bobine doit être remplacée par la bobine supplémentaire de 575V livrée avec l’élévateur.
15. Remplissage et saignement de l’huile : Utilisez Dexron III ATF, ou un fluide hydraulique qui satisfait aux spécifications de la norme ISO 32. Retirez le bouchon de remplissage-reniflard, Figure 8a. Versez 7,5 litres de liquide. Démarrez l’unité, soulevez le élévateur d’environ 2 pi. Ouvrez les purgeurs de cylindre d’environ 2 tours, Figure 9a.

Fermer les purgeurs lorsque le fluide coule. Les valeurs de couple pour les purges sont de 15 pi lb minimum et de 20 pi lb maximum. Baissez entièrement l’élévateur. Ajoutez plus de liquide jusqu’à ce qu’il atteigne la marque MIN sur le réservoir. Remettez le bouchon de remplissage-reniflard en place.

Si le bouchon de remplissage-reniflard est perdu ou cassé, commander un remplacement. Le réservoir doit être ventilé.

16. Interrupteur de suspension : Vérifiez l’interrupteur de l’assemblage suspendu pour vous assurer que la barre d’interrupteur appuie suffisamment sur le piston de l’interrupteur pour actionner l’interrupteur. L’interrupteur de l’assemblage suspendu est normalement câblé ouvert, voir Figure 15, Figure 16 et Figure 16b. L’élévateur ne fonctionnera pas tant que le poids de la barre d’interrupteur n’enforce pas le piston de l’interrupteur. Vérifiez que l’unité d’alimentation cesse de fonctionner lorsque la barre de l’interrupteur est relevée et redémarre lorsque la barre est relâchée.

17. Bras et Contraintes : Avant d’installer les bras, soulevez les chariots à une hauteur convenable. Graisser les goupilles de bras pivotant et les trous avec de la graisse au lithium. Glisser le bras dans l’étrier, Figure 17a. Installez les goupilles de bras de 1-3/4” de diamètre, Figure 17a.

Après avoir installé les bras et les goupilles, installez les équipements de retenue du bras comme suit : Installez l’équipement de retenue sur la chape du bras, tel qu’illustré, Figure 17b. Assurez-vous que le côté du pignon marqué TOP est orienté vers le haut, Figure 17b.

Ensuite, installez les (2) 3/8”-16NC x 1-1/2” HHCS (8 au total pour les 4 bras) et les rondelles à ressort de 3/8” dans l’équipement et le bras, mais sans les serrer. Référence Figure 17c, Figure 18, et Figure 19.

Serrez les boulons du dispositif de retenue à 30-34 pi-lb.
REMARQUE : Pour vérifier le fonctionnement des équipements de retenue, soulevez le chariot de 1" minimum de la position la plus basse. tirez sur l’axe-anneau et ajustez les bras dans la position désirée. Pour enclencher la retenue, laissez l’axe-anneau tourné vers le bas afin que les dents de l’engrenage s’engrènent ensemble. Il peut être nécessaire de faire pivoter légèrement le bras pour engager les dents d’engrenage.

REMARQUE : Tige & Anneau, Ressort, & Bloc d’engrenage sont tous pré-assemblés.

REMARQUE : Une fois le bras installé dans l’étrier, tirez la goupille de l’actionneur vers le haut et faites pivoter le bras complètement, en veillant à ce que le dispositif de retenue et le bloc d’engrenage restent toujours alignés. S’ils ne restent pas alignés, enlevez les équipements de retenue et installez-les dans la position opposée.

N’utilisez PAS de trous marqués avec des flèches.

Utilisez les trous marqués d’une flèche pour l’avant droit et l’arrière gauche.

Utilisez les trous marqués d’une flèche pour l’avant gauche et l’arrière droit.
18. **Installation du rack pour les adaptateurs d’extensions**
 : Installez les racks comme indiqué, Figure 20, en utilisant un PHMS 5/16”-18NC x 3/8”.

19. **Installation de pare-chocs de porte** :
 1) Pressez le long pare-chocs sur le bord de la colonne, Figure 21a.
 2) Pressez le pare-chocs court sur le bord supérieur du montant, Figure 21a.

20. **Réglage du câble de verrouillage** :
 A) Assurez-vous que le loquet s’enclenche et se désengage correctement. **Relâchez** lentement la poignée du loquet. Un écart de 1/8” entre le haut du cliquet de verrouillage et la colonne est autorisé.
 B) Lorsque vous levez, écoutez les loquets pour vous assurer que les deux loquets de verrouillage tombent dans les fentes du loquet. Si ce n’est pas le cas, desserrer le serre-câble et ajustez la tension si nécessaire.
 C) Installez le couvercle du loquet de verrouillage gauche à l’aide de 5/16-18NC x 3/8” lg PHMS.

22. **Ajustements du câble égaliseur**: Levez l’élévateur pour vérifier la tension du câble égaliseur. Sous le châssis, saisissez les câbles adjacents entre le pouce et l’index, avec environ 15 lb. de force, vous devriez simplement tirer les câbles ensemble. Ajustez-les aux points d’ancrage supérieurs Figure 21b.

23. **Autocollant de dégagement du loquet de verrouillage**: Installez l’autocollant de dégagement du loquet sur le couvercle au dessus de la poignée de dégagement du loquet, Figure 22.

24. **Localisation des autocollants au point de pincement**: Installez les autocollants inclus au point de pincement. Placez (1) un autocollant sur chaque colonne, Figure 23.

25. **Centreur de positionnement des roues**: Positionnez le centreur de positionnement des roues comme illustré sur la Figure 1. Percez (2) trou de 3/8” de 2-1/2” de profondeur dans le plancher de béton en utilisant les trous du centreur de positionnement des roues comme guide. Enfoncez les deux ancrages fournis dans le béton pour fixer le centreur.

26. **À la fin** de l’assemblage de l’élévateur, l’élévateur doit être actionné pour en assurer le bon fonctionnement. Observez que les verrous fonctionnent dans toutes les positions de verrouillage, que chaque côté se soulève de manière égale, que l’hydraulique ne fuit pas, que toutes les commandes électriques fonctionnent comme indiqué, que tous les systèmes pneumatiques sont fonctionnels et sans fuite, que les rampes tournent librement (le cas échéant), et que les dégagements appropriés avec tous les articles dans la baie ont été maintenus.

Faites fonctionner l’élévateur avec un véhicule typique et observez pour vous assurer que les mêmes items fonctionnent correctement.
Installateur : Veuillez retourner le présent dépliant dans l’enveloppe de documentation, et donnez-le au propriétaire/opérateur de l’élévateur.

Merci

Les opérateurs formés et un entretien régulier assurent une performance satisfaisante de votre élévateur Rotary.

Contactez votre détaillant Rotary autorisé le plus près pour des pièces de rechange véritables Rotary. Voir les informations pour les bris de pièces.