IMPORTANT Reference ANSI/ALI ALIS, Safety Requirements for Installation and Service of Automotive Lifts before installing lift.
• **Shall ensure** that lift operators are qualified and that they are trained in the safe use and operation of the lift using the manufacturer’s operating instructions; ALI/SM101-1, ALI Lifting in Right safety manual; ALI/ST-90 ALI Safety Tips card; ANSI/ALI ALOIM-2008, American National Standard for Automotive Lifts-Safety Requirements for Operation, Inspection and Maintenance; ALI/WL Series, ALI Uniform Warning Label Decals/Placards; and in the case of frame engaging lifts, ALI/LP-GUIDE, Vehicle Lifting Points/Quick Reference Guide for Frame Engaging Lifts.

• **Shall establish** procedures to periodically inspect the lift in accordance with the lift manufacturer’s instructions or ANSI/ALI ALOIM-2008, American National Standard for Automotive Lifts-Safety Requirements for Operation, Inspection and Maintenance; and **The Employer Shall ensure** that lift inspectors are qualified and that they are adequately trained in the inspection of the lift.

• **Shall establish** procedures to periodically maintain the lift in accordance with the lift manufacture’s instructions or ANSI/ALI ALOIM-2008, American National Standard for Automotive Lifts-Safety Requirements for Operation Inspection and Maintenance; and **The Employer shall ensure** that lift inspectors are qualified and that they are adequately trained in the maintenance of the lift.

• **Shall maintain** the periodic inspection and maintenance records recommended by the manufacturer or ANSI/ALI ALOIM-2008, America National Standard for Automotive Lifts-Safety Requirements for operation, Inspection and Maintenance.

• **Shall display** the lift manufacture’s operating instructions ALI/SM 93-1, ALI Lifting it Right safety manual; ALI/ST-90 ALI Safety Tips card; ANSI/ALI ALOIM-2008, American National Standard for Automotive Lifts-Safety Requirements for Operation, Inspection and Maintenance; and in the case of frame engaging lifts, ALI/LP-GUIDE, Vehicle Lifting Points/Quick Reference Guide for Frame Engaging Lifts; in a conspicuous location in the lift area convenient to the operator.

• **Shall provide** necessary lockout/tagout means for energy sources per ANSI Z244.1-1982 (R1993), Safety Requirements for the Lockout/Tagout of Energy Sources, before beginning any lift repairs.

• **Shall not modify the lift** in any manner without the prior written consent of the manufacturer.

<table>
<thead>
<tr>
<th>Capacity (lbs)</th>
<th>Min. WB (in)</th>
</tr>
</thead>
<tbody>
<tr>
<td>44</td>
<td>160</td>
</tr>
<tr>
<td>64</td>
<td>175</td>
</tr>
<tr>
<td>80</td>
<td>185</td>
</tr>
</tbody>
</table>
1. Check to make sure that all parts/components listed in your Packing List have been delivered and are not damaged due to shipment. Any items found to be damaged should immediately be reported to the shipping company to begin processing any claims. Fig. 1 & Fig. 2, contain the identification and naming of lift components used throughout this manual. Become familiar with the components and parts as you unpack items.

2. Decide where to position the lift for optimum efficiency of floor space. To aid in the installation of the lift an EFR (Equipment Foundation Requirement) is provided which has the minimum requirements to be used for the foundation footing. *These guidelines should never be compromised.* If the minimum requirements shown in EFR (Equipment Foundation Requirements) are not met, contact the factory for individual analysis on a case by case basis. The various positions in which the lift may be installed are shown in Fig. 3 (please note that not all installations shown are standard; consult your sales representative for more details).

3. For surface lifts, you must decide where to position the drive-on ramps based on the options you purchased and install the lift using the layouts shown in Fig. 3. The other *custom* installations labeled in Fig. 3 may require optional equipment.

CAUTION The foundation for this machine acts as structural element of the lift itself. Core samples shall be taken to determine and document concrete strength and thickness. The guidelines shown for these requirements in the EFR (Equipment Foundation Requirements) should never be compromised.
1. **Determine lift location:**
 1. Confirm location of lift using architects plan, if available.
 2. Review the lift specifications, Figs. 1 through 5.
 3. Runways can weigh up to 11,500 lbs.
 4. Control weighs approximately 700 lbs without oil.

WARNING Do not install on asphalt or other unstable surfaces.

IMPORTANT Two forklifts will be needed for the installation of the lift. They should be rated to lift a minimum of 6,000 lbs. each. If you do not own a forklift or they are not rated to handle the specified weight you will need to rent one. This should be considered when estimating the cost of the installation.

ATTENTION This lift can also be installed in a recess. For recess installation and EFR (Equipment Foundation Requirement) can be obtained by contacting Rotary Lift.

Customer Provides:
- 208-230 VAC three phase 60hz power for 39-57 full load amps.
- 460 VAC three phase 60hz power for 18-26 full load amps.
- 575 VAC three phase 60hz power for 14-20 full load amps.

IMPORTANT **DO NOT** power lift with 120V power.
- Protect each circuit with a time delay fuse or circuit breaker per NEC and local codes.
- 90 – 120 psi shop air at 20 cfm minimum.

Required Tools & Supplies List

<table>
<thead>
<tr>
<th>Required Tools & Supplies List</th>
<th>17. Wire cutters/strippers</th>
</tr>
</thead>
<tbody>
<tr>
<td>460 Volt, 18-26 Amp Service</td>
<td>19. Pry bar</td>
</tr>
<tr>
<td>575 Volt, 14-20 Amp Service</td>
<td>20. Sledge hammer</td>
</tr>
<tr>
<td>2. Shop air</td>
<td>21. Shop vacuum</td>
</tr>
<tr>
<td>3. 20 gallons of AW32/ISO32 oil</td>
<td>22. Hammer</td>
</tr>
<tr>
<td>4. Two fork lifts – min. 6,000 lb capacity each</td>
<td>23. Full set of wrenches and sockets – English sizes</td>
</tr>
<tr>
<td>6. Hammer drill</td>
<td>24. Precision screw driver set</td>
</tr>
<tr>
<td>7. 1” hammer drill bit, 1-1/8” if epoxy anchors</td>
<td>25. Full set of screw drivers – philips & standard</td>
</tr>
<tr>
<td>8. 5/8” hammer drill bit</td>
<td>26. 12 ga wire for high integrity ground</td>
</tr>
<tr>
<td>9. Torque wrench – min 150 ft-lbs</td>
<td>27. Volt meter</td>
</tr>
<tr>
<td>10. Self leveling laser transit</td>
<td>28. Rotary Tool</td>
</tr>
<tr>
<td>11. Tape measure – min 50’</td>
<td>29. VREX Rotary Tool Cable</td>
</tr>
<tr>
<td>12. Chalk line</td>
<td>31. Laptop computer</td>
</tr>
<tr>
<td>13. 2” Square</td>
<td>32. 3/8” Hammer drill bit</td>
</tr>
<tr>
<td>14. Paint marker</td>
<td>33. Lifting straps/ chains with min. 6,600 lb rating</td>
</tr>
<tr>
<td>15. 4’ & 6’ Level</td>
<td>34. 12 x 3/4”-10NC Leveling bolts</td>
</tr>
<tr>
<td>16. Band cutters</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>24. Precision screw driver set</th>
<th>25. Full set of screw drivers – philips & standard</th>
</tr>
</thead>
<tbody>
<tr>
<td>26. 12 ga wire for high integrity ground</td>
<td>27. Volt meter</td>
</tr>
<tr>
<td>28. Rotary Tool</td>
<td>29. VREX Rotary Tool Cable</td>
</tr>
<tr>
<td>31. Laptop computer</td>
<td>32. 3/8” Hammer drill bit</td>
</tr>
<tr>
<td>33. Lifting straps/ chains with min. 6,600 lb rating</td>
<td>34. 12 x 3/4”-10NC Leveling bolts</td>
</tr>
</tbody>
</table>
Lift Components Identification of and Install Options

SURFACE MOUNT

Fig. 1

FLUSH MOUNT

Fig. 2
Lift Components Identification of and Install Options

Fig. 3
When the lift arrives, perform the following procedures:

IMPORTANT *DO NOT* unbolt legs until after runways have been set in their intended installation locations.

Measuring and Marking for the Placement of Each Platform:

1. Determine front and rear placement of the platforms; review Fig. 3 for available options.

2. Determine the center of the bay and strike a chalk-line on the floor along the entire length of the ramp and platform, Fig. 5.

3. Strike two chalk-lines 22-1/2" parallel to the center line (right and left side) for placement of each platform, Fig. 5. An outline of the platforms and center line is shown in the EFR (Equipment Foundation Requirement).

4. Strike a chalk-line across the front of the lift (perpendicular to center-line), Fig. 5, as indicated in the EFR (Equipment Foundation Requirement).

5. Strike two chalk-lines 40-5/16" parallel to the centerline (right and left side) for the positioning and aligning of baseplates, as shown on Fig. 5.

6. Using self-leveling laser identify the lowest and highest foot mounting locations, Fig. 3a. If greater than 3/4” difference is measured a full size contact shim will be required. Refer to EFR for full requirements. Contact Rotary Lift for parts order.
1. Mark the outline of each lower leg bracket location by placing location marks on the floor.

NOTE: Mark the location of each lower leg bracket with a permanent marker.

2. Determine left and right runways. The wheels free device tracks are located on the inside of the runways, shown in Fig. 4.

3. Carefully move each platform into position using chalk lines shown in Figs. 5 and 6 and an overhead crane or two fork lifts. Fixtures that bolt to the platform ends are available from Rotary lift for proper handling or two slots are provided at ends for attachment of chain hooks. Do not move the lift by picking up under the Safety Stop Bars. Severe damage to the Safety Stop Bars will occur. Consult your authorized sales representative for further advice on handling the lift.

Note: For Flush Mount temporarily set lift next to installation position and complete service leg connection before lowering into position.

4. After positioning each platform, check the location of the inside corners and adjust the platforms accordingly to square the lift within 1/4”. While doing this, always keep in mind the lift needs to be 22-1/2” from the center line to each Jack Rail (inside of platform) and 45” from Jack Rail to Jack Rail (space between both platforms). Use the included platform spacer tools to maintain the 45” spacing required as shown in Fig. 4.

5. Label both ends of each hydraulic hose, air line, and sensor cable. Pull them through conduit.

CAUTION Do not drop runways even from a short distance! Dropping runways may damage the components of the runway. They should be placed on the floor into position.

CAUTION Do not drag lift. Dragging or sliding lift can cause leg to rotate or shift relative to runway, leading to binding issues if not addressed during installation.

IMPORTANT Use supplied platform spacer tool to hold 45 ±1/16” dimension between the platform rails as shown. Locate between skip welds.
Chalkline For Front Of Runways
(Do Not Use This Chalk Line For Positioning Runways - Reference Only)

Align Lift Platform To Chalklines

Bay Center Chalkline

Baseplate Center Chalkline

Service Leg

22-1/2"

45±1/16"

40-5/16"

28’, 30’ And 36’ Runways

75-1/2”±1/4”, 99-1/2”±1/4”, 28’, 30’ And 36’ Runways

252’ For 28’, 30’ And 32’ Runways

324’ For 36’ Runways

444’ For 48’ Runways

Take Elevation Readings Where Base Plates Will Be Located (All 4 Locations)

Direction of Approach

C1

Baseplate Center Chalkline

Fig. 5
Optional Pad Layout

If Front Of Lift Exceeds 2" Of Shims Or Grout, Pour New Pad Here

Recommended When Using Standard Ramps

Optional 9' x 10' x 6" Thick Slab
3000psi Concrete Keyed into Existing Floor. New Concrete Supports Ramps So That Incline Is Not Too Steep.
Service Leg Connections

For a Surface Installation:

1. Hydraulic hose and air line connections must be completed as shown in Fig. 7.

For a Flush Installation:

Note: All service leg connections must be completed before lowering into a Flush Mounted installation, Fig. 7.

1. Set lift on the floor next to prepared flush pit.

2. Complete all necessary connections.

3. Carefully lift and set each runway into flush pit while guiding hoses and air line as necessary.

Fig. 7
Recess Installation
See EFR Drawings for Pit Requirements

Requirements:
(2) 6,000 lb. Forklifts
(2) 3/8” 6,600 lb. Grade 70 Lifting Chains/Hooks
Or (2) 2” 6,600 lb. Lifting Straps

Lifting Locations
(2) On Each Platform End
Flush Installation
See EFR Drawings for Pit Requirements

Note: All service leg connections must be completed before lowering into a Flush Mounted installation.

Requirements:
(2) 6,000 lb. Forklifts
(2) 3/8” 6,600 lb. Grade 70 Lifting Chains/Hooks
Or (2) 2” 6,600 lb. Lifting Straps
1. Determine your final location/placement of the control panel and move the control panel into position.

2. Remove the front and rear panels of the control panel.

3. Open the upper electrical enclosure.

4. Open the hydraulic motor conduit box and wire the motor to correspond to building voltage (Three Phase for motor operation). Available combinations include 200/208/230/460/575 VAC - Three Phase - 60 Hertz. The motor wiring diagram is located on the side of motor. Be sure the building voltage matches the voltage combination listed on the motor.

CAUTION All electrical connections should be made by a qualified electrical technician. **SERIOUS INJURY** could result from High Voltage and possible damage to electrical devices could occur if directions are not followed!

5. Hydraulic hoses, sensor cables, air lines, and fittings for each runway are in separate kits packaged with the control cabinet. Locate each kit with the appropriate runway (nearest and farthest runway from the control cabinet).

6. Hydraulic hose and air line connections must be completed as shown in Fig. 7.

7. Route the position sensor cables through the appropriate cable grips mounted to the upper electrical enclosure, Fig.8. Cables should be routed neatly to form a harness into the rear of the control panel due to limited space. Once all cables have been pulled through the cable grips in the upper electrical enclosure, Fig.8, pull enough slack back to the motor area to ensure ease of removing power unit at a later date if necessary.

8. Cut off excess cable and strip off at least 3” of cable jacket from each cable.

9. Strip back each individual conductor 3/8”.

10. Connect conductors to the appropriate terminal blocks shown in the wiring schematics provided in the back of the manual and Fig. 9.

CAUTION Intrinsically safe control wires must maintain a minimum 2” separation from non-intrinsically safe wires.
ROUTE SENSOR
WIRING HERE

Fig. 8

Fig. 9
11. Add approximately 20 gallons of hydraulic oil AW 32 or ISO 32 to within three (3) inches of the top of the hydraulic reservoir. DO NOT OVERFILL.

12. Connect hydraulic lines to the manifold located in back of the control panel, see Fig. 10. Install (4) four provided elbows hand tight. Install and tighten hoses. Last, tighten elbows to manifold.

Note: Coil any excess hose inside the control panel.

CAUTION After pulling supply hose through pipe chase, be sure to clean out hose. Debris in hose can damage lifting cylinders and / or cause lift to function erratically. This also applies to cutting the supply hose.
13. Pull the air line from the farthest platform to the nearest platform. Trim to length. Install the pneumatic air tee-fitting, Fig. 8. Take the remaining air line over to the control panel and make a temporary air connection for the purpose of opening and closing the locks for installation. See Fig. 11.

14. Connect the 1/4” push-in pneumatic-valve connector to a filtered regulated 90-120 psi air supply. Air valve inlet is the port closest to the muffler on the air valve as shown in Fig. 11.

15. Connect the airline from the lift to the outlet port of the air valve. This is the port facing the rear of the control panel.

16. Once it has been determined that the lower leg brackets are in the correct position, remove shipping nut, washer, plate, and all-thread, Fig. 12.
1. Close the electrical enclosure door and turn on the main power. Manually actuate the motor starter momentarily to check the rotation of the motor. Motor should rotate clockwise when viewed from the top. Make phase correction if necessary by reversing electrical wires to the motor.

 Note: The lift will not raise until the pump is primed.

2. Turn off main power. Connect to Rotary Tool cable to P5 (I/O 485), Fig. 11a.

3. Turn on main power and start Rotary Tool, Fig. 11b.
4. Select the VREX tab. Select the Launch VREX Diagnostics and Setup tab, Fig. 11c.

5. Wait for COM Status light and "Connected" notice, Fig. 11d.
6. Select the “Prime Pump” button, wait for power unit to stop running, Fig. 11e.

7. Turn main power off, disconnect the Rotary Tool cable, exit Rotary Tool.
1. For Flush or Recessed lift, before raising lift, record the amount the lift is below grade for each end that will be driven on or off.

2. Remove nut, washer, and plate. Raise lift to a total height of 3’ to 4’, verify runways are level while raising. Remove shipping thread, see Fig. 12.

3. Verify runways and lower leg brackets are still at the correct spacing. Refer to EFR and chalklines marked in this instruction manual. Confirm jack rail spacing is 45±1/16”.

CAUTION When raising lift before calibration it may be necessary to manually level lift.

If runways are out of level STOP and lower to ground. It may be necessary to raise and lower lift to a total height of 3’ to 4’several times to remove air from hydraulic system.
4. Verify the upper leg assembly is centered in the runway and runs parallel to the runway tube, Fig. 13. There should be 3-1/8" gap between the leg and the runway tube at both ends of each leg. Measure from tube to leg directly or hang plumb-bob from inside tube wall and measure from line to leg.
When raising lift before calibration it may be necessary to manually level lift.

5. Fully raise lift, then lower to top lock, Fig. 14. Check Baseplate alignment and position to the chalk lines. Baseplate front edge should align with chalk line, and V-notch centerline of baseplate should align with chalk line, Fig. 14a. Targeted alignment of ± 1/16” of parallel to chalk line.
6. For Flush or Recessed lifts, raise baseplates the required amount measured (note 1. in Lift Runway And Baseplate Leveling section) using 3/4”-10NC leveling bolts, Fig. 15. This will prevent the runways from sitting below grade at transition plates.

7. Use a self-leveling laser check baseplates heights, using 3/4”-10NC leveling bolts, Fig. 15, raise lower feet to approximately the same plane as higher feet. Use the machined pad on the inside baseplate upright as reference point for measurements, Fig. 15a.

Note: Due to length of lift relative to width, it’s most important for both rear baseplates to be on the same plane, and front baseplates to be on the same plane.
8. Lay bubble level on the top of the baseplate uprights machined pads. Level baseplate side to side and front to back using 3/4”-10NC leveling bolts, Fig. 15b and Fig. 15c.

9. Check spacing between verify the spacing between the runways is 45±1/16” on highest lock, a middle lock, and lowest lock which a bridge may be used at on both ends of the runway. Make adjustments as needed using leveling bolts and if needed lifting and relocating runway assemblies. If relocation of runways is needed recheck, repeat checking of baseplate position, and levelness of baseplate front to back.

10. If Flush or Recessed, lower lift to ground and confirm installation relative to floor surface level. Lift should be close to flush at each end, and likely raised above floor slightly in the middle. If lift is sitting too high at any runway end record the distance it needs to be lowered. Raise the lift and set on top lock, Fig. 14. Repeat leveling from note 8. and 9.

11. Check height between baseplate and concrete, if raised more than 1” a full contact shim should be welded to the bottom of the baseplate. Using a forklift raise end of runway and install and tack weld in place required full contact shims.

12. Measure twice drill once. The feet/legs may have walked some due to adjusting lift levelness. Recheck notes 3-5 (pg 21-23). When completed leveling set lift on highest lock, Fig. 14 and proceed to anchoring.
1. Use a core drill or carbide tipped concrete drill for this operation. Size the holes and depth according to the lift model number and bolt diameter given in the EFR.

Care shall be taken such that the hole is not drilled through the slab. **Blowout** occurs on the underside when a hole is drilled through the concrete-slab. This blowout causes difficulty in setting the wedge-type bolt. When the concrete-slab thickness is not significantly greater than the minimum embedment for the bolts, extra care shall be taken in drilling and the hole shall be cleaned thoroughly before installing the anchor. **Refer to the EFR for minimum slab thickness and minimum embedment depth for anchor bolts.**

2. Assemble the anchor with the nut and washer supplied so that the top of the nut is flush with the top of the anchor. Drive the anchor through the material to be fastened leaving room for shimming installation and adjustment.

3. Install steel finger shims under the leveled baseplates. At minimum shim to support at anchoring points using U-shaped shims. After shimming, back leveling bolts off so lift is **fully supported by shims.** Recheck levelness of front to back of baseplate as well as 45±1/16" from jack rail to jack rail, if levelness has shifted, re-lift with leveling bolts so shims can be adjusted, and then lower back onto shims, repeat as needed until lift is leveled. As a reminder if greater than 1" of shims needed a full baseplate shim will needed to be tacked in place.

4. Drive anchors so nut/washer are flush with baseplate. Expand the anchor by tightening to the specified torque. The anchor bolts shall be torqued to values shown in EFR.

```
\textbf{CAUTION}  The anchorage of this machine is extremely important!! At no time shall a load be placed on the lift until all anchor bolts are in place and properly tightened.
```

5. Rotate (4) fixed leg stop blocks (painted black). Blocks are shipped in tight position, to aid in keeping leg aligned. Remove 5/8”x 1” bolt, slide block out and remount rotating blocks to provide 1/4” clearance to reduce lift being over constrained. Re-install 5/8” x 1” bolt, Fig. 16.
Run nut down just below impact section of bolt. Drive anchor into hole until nut and washer contact base.

Tighten nut with Torque wrench to 150 ft.-lbs. (203 Nm).

CONCRETE AND ANCHORING REQUIREMENTS

<table>
<thead>
<tr>
<th>STANDARD</th>
<th>ANSI/ALI ALCTV</th>
<th>SEISMIC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Minimum Floor Thickness</td>
<td>6 INCHES</td>
<td>Varies by location consult with your structural engineer and manufacturer’s representative.</td>
</tr>
</tbody>
</table>
| Anchor | Hilti Kwik Bolt III 1” x 9”
Hilti #286018 or
Rawl #7463 | |
| Minimum Concrete Strength | 4000 PSI | |
| Minimum Anchor Embedment | 4-1/4 INCHES | |
| Minimum Distance to Concrete Edge, Crack, Expansion Joint, Abandoned Anchor Hole | 4-1/2 INCHES | |

“Automotive Lifts - Safety Requirements for Construction, Testing, and Validation” ANSI/ALI ALCTV-2017, and the lift owner is responsible for all charges related to any additional anchoring requirements as specified by local codes. Contact customer service for further information at: 800.445.5438
6. Remove (8) 3/8"-16 X 1" bolts and (8) temporary YELLOW stop blocks after anchoring but before operating lift, Fig. 16.

DO NOT operate the lift with blocks in place after the lift has been anchored.
7. Recheck/verify baseplates are level front to back, as well as jack rail to jack rail. Make adjustments as needed, ensuring when completed that the load is on shims and anchors have been torqued as per the EFR.

8. Check energy chain alignment. Energy chain mounting brackets have slots which allow some adjustment. If energy chain is twisted relative to leg assembly, or shifted toward baseplate upright, loosen and retighten into position.

9. Lower lift to the ground. Lift is not yet calibrated, monitor during lowering to ensure it does not get far out of level and adjust as needed using manual controls on the power unit to correct. Confirm distance between runways is maintained. Fully lower the lift. Lift will set on set down blocks. Anchoring of the Lift assembly is complete.

10. Install approach ramps (on surface mount) – Place approach ramps with respect to the platforms using the dimensions found in the EFR (Equipment Foundation Requirements). Raise the lift. Level the ramps. Drill and anchor your approach ramps.

11. Install the transition plates / rear wheel chock assembly.

CAUTION The anchorage of this device is very important!! If the anchorage fails to perform properly, the structural elements of the lift can be overstressed. All approved anchoring bolts shall be installed using the minimum torque specified in EFR for the particular model. This lift could cause SERIOUS DAMAGE to the Operator and/or machinery if not properly anchored to the floor.

IMPORTANT Baseplate alignment and levelness are important to prevent binding and wear of lift components. Jack to Jack rail dimension are especially important if a Rolling Jack is installed on the lift.

SEISMIC - Varies by location consult with your structural engineer and manufacturer’s representative.
Matching Leg Sensor Harness to Hydraulics

Note: If hydraulics and sensor harness have legs swapped, when the lift must correct due to an unbalanced load, the lift will correct the wrong leg.

1. Check hydraulics and sensors harness are on matching legs. Raise lift to just below first lock.

2. Record volt for each legs sensor (on the board side of the isolator/barriers) measure Black (ground) to White (resulting voltage), Fig. 16a.

3. Use manual lowering needle valve to lower leg 1, Fig. 16b. On a diagram record which leg moved. Check Voltage of sensor 1. If it did not change check other sensors. Tag sensor side harness for Leg 1 as Leg 1. Rewiring if needed will be done in step 5.

4. Repeat process from step 3 on legs 2-4, recording leg position and tagging harnesses.
5. Lower lift to the ground. Rewire sensor side as needed so hydraulics and sensor harness are matched. Clear member with Rotary Tool, Fig. 16c.

6. Document in cabinet leg positions (draw diagram on underside of lid and/or on tank).
1. Turn off main power. Connect to Rotary Tool cable to P5 (I/O 485), Fig. 11a.

2. Turn on main power and start Rotary Tool, Fig. 11b.

3. Select the VREX tab. Select the Launch VREX Diagnostics and Setup tab, Fig. 11c.

4. Wait for COM Status light and “Connected” notice, Fig. 11d.

5. Select “Open Calibration Panel”, Fig. 17.

6. Follow “On Screen Instructions” to calibrate, Fig. 17a.
7. Verify lift is lowered to ground and select "Set Calibration Point", Fig. 17b.

8. Select "Set" to identify bottom calibration point, Fig. 17c.

9. Raise lift until all locks "click" past the first lock. Then lower to locks.

10. Select "Set Calibration Point". Continue this sequence, following "On Screen Instructions", until full height is reached, Fig. 17d.
11. When lift has reached full height, after final calibration point has been set, select “Finalize Calibration”, Fig. 17e.

12. When calibration is successful, all items will turn green, Fig. 17f.
13. When calibration has failed, all items will turn red, Fig. 17g.

14. After successful calibration, exit calibration panel.

15. Lift is now ready for normal operation. Select "Open Setup Panel" to set auxiliary height stop, JHB height, top limit, or exit Rotary Tool and remove Rotary Tool cable.
Installing Drive-Through Ramps

1. The drive-through ramps, if used, should be placed with respect to the platforms using the dimensions found in the EFR (Equipment Foundation Requirements).

 Each ramp is installed with two 5/8 in. diameter anchors that shall be tightened to an installation torque of 125 ft-lbs.
Final Installation Instructions

Loading the Operating Program:
The lift was shipped from the factory with an installation program installed. The main operating program and operational limits must be installed by an authorized representative of Rotary Lift.

Final Lift Installation Instructions:
1. Bolt the front wheel chocks to the lift with the flat edge facing inward. Install utility covers.
2. Anchor the control panel.
3. Anchor the conduit support covers behind the service legs.
4. All connections (electrical, hydraulic, air) should now be made and verified for final operation.
5. Put light kit electrical box and power cables into cabinet unless the light kit is also to be installed.
6. If you encountered anything not discussed in this manual while installing your lift, contact your authorized sales representative or Rotary Lift.
7. To assign values for height limits or optional lamp on/off height limits, contact your authorized sales representative or Rotary Lift for assistance.

IMPORTANT When assigning values for the height limit, do not raise the lift. Fully raising the lift to the height where the cylinders are fully extended may cause the velocity fuses to close and prevent the lift from being lowered.

8. Upon completion of the assembly of the lift, the lift is to be operated to assure proper function. Observe for locks operating in all locking positions, each side lifts equally, hydraulics do not leak, all electrical controls functional as labeled, all pneumatics are functional and leak free, ramps rotate freely, and proper clearances with all items in bay have been maintained.

Operate the lift with a typical vehicle and observe to assure the same items for proper functioning.

IMPORTANT The 1/2” hardware that retains the lower lock jaw to the cylinder is loose from the factory. It is important to leave loose and not torque as it may induce binding in the system.
FOR CONTINUED PROTECTION AGAINST FIRE, REPLACE ONLY WITH
SAME TYPE OF FUSES SPECIFIED IN SYSTEM WIRING DIAGRAM AND
LABELED BY FUSES

MAX PCB
FA9196

INPUT.0
GND
1 RED
5 BLACK
2 BLACK
6 RED
3 BLACK
7 RED
8 UP PUSH BUTTON
P/N AC700031
LOW AIR PRESSURE SWITCH
P/N AP01239
2 PIN AMP CONNECTOR
TERMINAL P/N AP02564
HOUSING P/N AP02545
SEAL P/N AP02554

INPUT.1
GND
1 RED
2 BLACK
3 RED
4 BLACK
5 DOWN PUSH BUTTON
P/N AC70003B

INPUT.2
GND
1 BLACK
2 RED
3 BLACK
4 RED
5 DOWN PUSH BUTTON
P/N AC70003B

INPUT.3
GND
1 BLACK
2 RED
3 BLACK
4 RED
5 DOWN PUSH BUTTON
P/N AC70003B

INPUT.4
GND
1 BLACK
2 RED
3 BLACK
4 RED
5 DOWN PUSH BUTTON
P/N AC70003B

INPUT.5
GND
1 BLACK
2 RED
3 BLACK
4 RED
5 DOWN PUSH BUTTON
P/N AC70003B

INPUT.6
GND
1 BLACK
2 RED
3 BLACK
4 RED
5 DOWN PUSH BUTTON
P/N AC70003B

INPUT.7
GND
1 BLACK
2 RED
3 BLACK
4 RED
5 DOWN PUSH BUTTON
P/N AC70003B

INPUT.8
GND
1 BLACK
2 RED
3 BLACK
4 RED
5 DOWN PUSH BUTTON
P/N AC70003B

NOTE:
1. JJ1 CONNECTOR USES V50039 HARNESS
2. JJ2 CONNECTOR USES V50040 HARNESS
3. JJ3 HARNESS CONTAINS MATING CONNECTOR FOR LOW AIR
 PRESSURE SWITCH
4. REMOVE JHP WIRES FROM JJ3 HARNESS (PINS 4 AND 8)
 FOR SURFACE MOUNT INSTALLATIONS
FOR CONTINUED PROTECTION AGAINST FIRE, REPLACE ONLY WITH SAME TYPE OF FUSES SPECIFIED IN SYSTEM WIRING DIAGRAM AND LABELED BY FUSES.

INPUT
208V
LINE H1-H2
240V
LINE H1-H3
480V
LINE H1-H4

ALTERNATE
STEP DOWN TRANSFORMER
P/N FA8132

DISCONNECT SWITCH
80A, 3 POLE
P/N MC130167

12 GA ILK
Fuses F4/F5
600V @ 125A

208V
JUMPER W1-H1, W2-H4
LINE W1-H1
240V
JUMPER W1-H3, W2-H4
LINE W1-H3
480V
JUMPER W1-H3, W2-H4
LINE W1-H4

STEP DOWN TRANSFORMER TERMINAL BLOCKS FOR D2
P/N FA7990

MOTOR CONTACTOR
P/N EFX0008210007

OVERLOAD RELAY
P/N EFX0008210008

COIL CONNECTIONS
ON SHEET 1

POWER INDICATOR
P/N AC700029

20HP
FOR CONTINUED PROTECTION AGAINST FIRE, REPLACE ONLY WITH SAME TYPE OF FUSES SPECIFIED IN SYSTEM WIRING DIAGRAM AND LABELED BY FUSES.

HAZARD LOCATION
CLASS I DIVISION 1.2
GROUP D
Class I, Zone 0 Ex ia IIA T4 Ga

NOTE:
1. REFER TO INSTALLATION INSTRUCTION IN THE LIFT MANUAL BEFORE ATTEMPTING HOOK-UP.
2. ALL INTRINSICALLY SAFE WIRES MUST BE SEPARATED FROM NON-INTRINSICALLY SAFE WIRES BY AT LEAST 2 INCHES.
3. MAXIMUM CABLE LENGTH IS 200 FEET.
4. FIELD WIRING OF INTRINSICALLY SAFE WIRES MUST BE INSTALLED IN ACCORDANCE WITH ARTICLE 504 OF THE NATIONAL ELECTRIC CODE.
HYDRAULIC DIAGRAM

OUTLET PORTS 9/16-18 SAE #6

INLET HAND PUMP 9/16-18 SAE #6

RETURN PORT 3/4-16 SAE #12

INLET PORTS 9/16-18 SAE #6

4.477 CC/REV PER PUMP

(.273 IN3/REV PER PUMP)

(2.09 GPM PER PUMP SECTION @ 1765 rpm)
Installer: Please return this booklet to literature package, and give to lift owner/operator.

Thank You

Trained Operators and Regular Maintenance Ensures Satisfactory Performance of Your Rotary Lift.

Contact Your Nearest Authorized Rotary Parts Distributor for Genuine Rotary Replacement Parts. See Literature Package for Parts Breakdown.